In the past, bone fractures due to accidents were rectified by surgery and reconstruction of bone structure. In recent times, researchers have been made to find a solution by producing alternate biomaterials. Hydroxyapatite (HAp) is one of the most important bioactive materials used as a substitute for human hard tissue because of its composition being very similar to human bones and teeth. A study has proved that HAp has been used for bone regeneration in clinical trials in the mid-1980. HAp has been used as implant coatings and graft materials and also used as granules, cement, and pastes for bone regenerative applications. HAp coatings on bioimplants improved biocompatibility, bioactivity, and biological fixation. Moreover, some of the deposition methods can be employed to increase the cellular responses of bone regeneration such as sputtering, spraying, electrodeposition, and pulsed layer deposition. The researcher has prepared hydroxyapatite from chemical and natural sources. The surface area and intrinsic properties of the HAp play a vital role in bone-related applications. This can be achieved by synthesizing the HAp from natural sources rather than synthetic materials. The HAp obtained from the chemical source is not fulfilling the requirements of the natural bone. A variety of biowaste materials such as eggshell, crab shell, snail shell, bovine bone, fishbone, and fish scales are available in nature and can be converted to useful calcium source for HAp. The present study is to produce the HAp from biowaste materials like eggshell and chemical sources using the wet precipitation method. The synthesized HAp is coated on the Ti6Al4V alloy using the electrodeposition method, and it is immersed in SBF solution at 37 °C for corrosion testing. The coated samples are investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), electrochemical study, field emission scanning electron icroscopy (FESEM), energy dispersive X-ray analysis (EDAX), AFM, and antibacterial activity with two different microorganisms. FTIR and XRD confirm the functional groups and crystallinity of the HAp. The good antibacterial activity of the HAp is observed against two bacterial strains. The corrosion studies reveal that the HAp derived from a natural source is eco-friendly and nontoxic and has excellent corrosion resistivity and cell adhesion properties. A strong bond is formed between the naturally derived HAp with bone tissue which is involved in the bio-resorption process and does not pose any side effect to the human body compared to synthetically derived HAp. In addition, the biowaste materials are converted to useful biomaterials and can reduce environmental pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-022-03968-8 | DOI Listing |
Alzheimers Dement
December 2024
UNIVERSITY OF CALIFORNIA, BERKELEY, California, CA, USA; Department of Psychiatry, SRIHER, Chennai, India.
Background: Exposure to the household air pollution (HAPIN) is a leading health risk in populations in LMIC s and accounts for an estimated 2.3 million premature deaths annually and 91.5 million disability-adjusted life years (Bennitt et al,2021).
View Article and Find Full Text PDFMolecules
December 2024
Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan.
Mild hypophosphatasia (HPP) can be difficult to distinguish from other bone disorders in the absence of typical symptoms such as the premature loss of primary teeth. Therefore, this study aimed to analyze the crystallinity of hydroxyapatite (HAp) and the three-dimensional structure of collagen in HPP teeth at the molecular level and to search for new biomarkers of HPP. Raman spectroscopy was used to investigate the molecular structure, composition, and mechanical properties of primary teeth from healthy individuals and patients with HPP.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Security Technologies "MORATEX", 3 Marii Sklodowskiej-Curie Str., 90-505 Lodz, Poland.
This article presents an evaluation of the accelerated aging impact on the structural properties of biodegradable PLA/HAp implants produced using 3D printing technology for use in traumatic bone defect repairs in individual patients. The designed biodegradable implants were sterilized with a radiation dose of 25 ± 0.99% kGy, then exposed to an accelerated aging process.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China.
Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China.
Unlabelled: The dual-energy spectral CT (DEsCT) employs material decomposition (MD) technology, opening up novel avenues for the opportunistic assessment of bone status. Radiomics, a powerful tool for elucidating the structural and textural characteristics of bone, aids in the detection of mineral loss. Therefore, this study aims to compare the efficacy of bone status assessment using both bone density measurements and radiomics models derived from MD images and to further explore the clinical value of radiomics models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!