Time-dependent plastic deformation commonly exists in silicon-based microelectronic contact. The stress relaxation behaviors of SiO/Si bilayer composite are studied using molecular dynamics simulation by varying loading speed. The results imply that the indentation force decreases sharply at the initial and linearly towards the end of holding, and the amount of stress relaxation increases with the increasing loading speed. The plastic deformation of confined amorphous SiO film is carefully analyzed based on the amorphous plasticity theories; variations of coordinated silicon atoms and Si-O bond number indicate that the films are further densified at different degrees depending upon loading speed during holding. The densification is strengthened at a higher speed because much more activated shear transformation zones (STZs) and accumulated free volume generate within films indented at higher speed. The phase transformation of monocrystalline silicon is observed in indented silicon during holding; the Si-II and bct-5 silicon atoms increase with time and loading speed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-022-05136-5 | DOI Listing |
Bioresour Technol
January 2025
Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
The improvement of biogas production in anaerobic digestion (AD) by biochar introduction has been demonstrated. However, the distribution of biochar in the digester and its effect on AD have been seldom explored. In this study, the distribution of biochar and their impact on AD were investigated in a 30 L semi-continuously operated bench-scale anaerobic digester.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Pharmaceutics
December 2024
Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
Background/objectives: Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous dosage forms with high drug loading. When the powder mixture is exposed to elevated temperatures during SLS printing, the active ingredients can be converted from the crystalline to the amorphous state, which can be used as a strategy to improve the dissolution rate and bioavailability of poorly soluble drugs. This study investigates the potential application of SLS 3D printing for the fabrication of tablets containing the poorly soluble drug carvedilol with the aim of improving the dissolution rate of the drug by forming an amorphous form through the printing process.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), FEUP Campus, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal.
The present work constitutes the initial experimental effort to characterise the dynamic tensile performance of basalt fibre grids employed in TRM systems. The tensile behaviour of a bi-directional basalt fibre grid was explored using a high-speed servo-hydraulic testing machine with specialised grips. Deformation and failure modes were captured using a high-speed camera.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Central South University, Changsha 410075, China.
Geopolymer, as a promising inorganic binding material, holds potential for use in constructing base layers for highway pavements. This study aims to evaluate the mechanical properties of geopolymer-stabilized macadam (GSM) at both the micro- and macro-scale by a series of tests, demonstrating that high-Ca GSM is a high-quality material for pavement base layers. The results demonstrated that GSM exhibits outstanding mechanical and fatigue properties, significantly surpassing those of cement-stabilized macadam (CSM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!