A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural Networks to Recognize Patterns in Topographic Images of Cortical Electrical Activity of Patients with Neurological Diseases. | LitMetric

Neural Networks to Recognize Patterns in Topographic Images of Cortical Electrical Activity of Patients with Neurological Diseases.

Brain Topogr

Neuroinnovation Technology & Brain Mapping Laboratory, Federal University of the Parnaíba Delta, Av. São Sebastião, 2819 - Bairro São Benedito, Parnaíba, Piauí, CEP: 64202-020, Brazil.

Published: July 2022

Software such as EEGLab has enabled the treatment and visualization of the tracing and cortical topography of the electroencephalography (EEG) signals. In particular, the topography of the cortical electrical activity is represented by colors, which make it possible to identify functional differences between cortical areas and to associate them with various diseases. The use of cortical topography with EEG origin in the investigation of diseases is often not used due to the representation of colors making it difficult to classify the disease. Thus, the analyses have been carried out, mainly, based on the EEG tracings. Therefore, a computer system that recognizes disease patterns through cortical topography can be a solution to the diagnostic aid. In view of this, this study compared five models of Convolutional Neural Networks (CNNs), namely: Inception v3, SqueezeNet, LeNet, VGG-16 and VGG-19, in order to know the patterns in cortical topography images obtained with EEG, in Parkinson's disease, Depression and Bipolar Disorder. SqueezeNet performed better in the 3 diseases analyzed, with Parkinson's disease being better evaluated for Accuracy (88.89%), Precison (86.36%), Recall (91.94%) and F1 Score (89.06%), the other CNNs had less performance. In the analysis of the values of the Area under ROC Curve (AUC), SqueezeNet reached (93.90%) for Parkinson's disease, (75.70%) for Depression and (72.10%) for Bipolar Disorder. We understand that there is the possibility of classifying neurological diseases from cortical topographies with the use of CNNs and, thus, creating a computational basis for the implementation of software for screening and possible diagnostic assistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10548-022-00901-4DOI Listing

Publication Analysis

Top Keywords

cortical topography
16
parkinson's disease
12
neural networks
8
cortical
8
cortical electrical
8
electrical activity
8
neurological diseases
8
diseases cortical
8
patterns cortical
8
bipolar disorder
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!