Carbon nanostructures, such as the water-soluble fullerene (FLN) derivatives, are considered perspective agents for agriculture. FLN can be a novel nano-agent modulating plant response against stress conditions. However, the mechanism underlying the impacts of FLN on plants in agroecosystems remains unclear. Zea mays was exposed to exogenous C -FLN applications (FLN1: 100; FLN2: 250; and FLN3: 500 mg L ) with/without cobalt stress (Co, 300 μM) for 3 days (d). In the maize chloroplasts, Co stress disrupted the photosynthetic efficiency and the expression of genes related to the photosystems (psaA and psbA). FLNs effectively improved the efficiency and photochemical reaction of photosystems. Co stress induced the accumulation of reactive oxygen species (ROS) as confirmed by ROS-specific fluorescence in guard cells. Co stress increased only chloroplastic superoxide dismutase (SOD) and peroxidase (POX). Stress triggered oxidative damages in maize chloroplasts, measured as an increase in TBARS content. In Co-stressed seedlings exposed to FLN1 and FLN2 exposures, the hydrogen peroxide (H O ) was scavenged through the nonenzymes/enzymes-related to the AsA-GSH cycle by preserving ascorbate (AsA) conversion, as well as GSH/GSSG and glutathione (GSH) redox state. Also, the alleviation effect of FLN3 against stress could be attributed to increased glutathione S-transferase (GST) activity and AsA regeneration. FLN applications reversed the inhibitory effects of Co stress on nitrogen assimilation. In maize chloroplasts, FLN increased the activities of nitrate reductase (NR), glutamate dehydrogenase (GDH), nitrite reductase (NiR), and glutamine synthetase (GS), which provided conversion of inorganic nitrogen (N) into organic N. The ammonium (NH ) toxicity was removed via GS and GDH but not glutamate synthase (GOGAT). The increased NAD-GDH (deaminating) and NADH-GDH (aminating) activities indicated that GDH was needed more for NH detoxification. Therefore, FLN exposure to Co-stressed maize plants might play a role in N metabolism regarding the partitioning of N assimilates. Exogenous FLN conceivably removed Co toxicity by improving the expressions of genes related to reaction center proteins of photosystems, increasing the level of enzymes related to the defense system, and improving the N assimilation in maize chloroplasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13720 | DOI Listing |
J Genet Genomics
January 2025
National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:
Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs, School of Life Sciences, Nantong University, Nantong 226019, China.
β-ketoacyl-CoA synthase (KCS) enzymes play a pivotal role in plants by catalyzing the first step of very long-chain fatty acid (VLCFA) biosynthesis. This process is crucial for plant development and stress responses. However, the understanding of genes in maize remains limited.
View Article and Find Full Text PDFPhotosynthetica
May 2024
Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia.
Plant Physiol Biochem
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China. Electronic address:
Heat Shock Protein plays a vital role in maintaining protein homeostasis and protecting cells from stress stimulation. As one of the HSP40 proteins, DnaJ is a stress response protein widely existing in plant cells. The function and regulatory mechanism of ZmDnaJ, a novel chloroplast-localized type-III HSP40, in maize drought tolerance were characterized.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!