We report herein a fluorescence polymer membrane as a film-shaped solid sensory kit for the detection and quantification in water of saccharides, namely, fructose and glucose, and dopamine. The sensory motifs are phenylboronic acids, which are chemically incorporated in the polymer network in the radically initiated bulk polymerization process. The sensory membrane is fluorescent. The interaction of the sensory motifs with dopamine "turn-off" the fluorescence due to a dynamic quenching, while stable complexes are formed with saccharides giving rise to a fluorescence "turn-on". The variation of the fluorescence intensity and the wavelength of the maxima permitted the titration of the species with a detection limit of 3-4 × 10 M. The hydrophilic membrane allowed for the detection in water in spite of the lack of solubility in this medium of the sensory phenylboronic acid derivative monomer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.5b00465 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
Recently, transparent wood (TW) has been considered for many energy-efficient building products, such as windows and decorations. However, the existing TW still faces issues with size and thickness, as well as problems with functional fillers affecting the optical and mechanical properties of TW, which limits its wide application in the window products. In this study, a wood composite material (WCM) with good optical, mechanical, and thermal insulation and UV-shielding properties was prepared by using delignified wood (DW), methyl methacrylate (MMA), and 4-vinylphenylboric acid (VPBA).
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.
View Article and Find Full Text PDFBiomaterials
January 2025
School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China. Electronic address:
Solid tumors (particularly the desmoplastic ones) usually harbor insurmountable mechanical barriers and formidable immunosuppressive tumor microenvironment (TME), which severely restricted nanomedicine-penetration and vastly crippled outcomes of numerous therapies. To overcome these barriers, a versatile nanoplatform orchestrated mechanotherapy with chemoimmunotherapy was developed here to simultaneously modulate tumor physical barriers and remodel TME for synergistically enhancing anticancer efficiency. Dexamethasone (DMS) and cis-aconityl-doxorubicin (CAD) were co-hitchhiked into phenylboronic acid functionalized polyethylenimine (PEI-PBA) carrier, and further in situ shielded by aldehyde-modified polyethylene glycol (PEG) to form CAD/DMS@PEG/PEI-PBA (CD@PB) nanoparticles (NPs).
View Article and Find Full Text PDFBeilstein J Nanotechnol
January 2025
Alexander Butlerov Institute of Chemistry, Kazan Federal University, Lobachevsky str. 1/29, Kazan 420008, Russia.
Disruption of cholinesterases and, as a consequence, increased levels of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of antidote delivery systems that will release the drug only when acetylcholine levels are elevated.
View Article and Find Full Text PDFAdv Mater
January 2025
Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China.
Multidrug-resistant (MDR) bacteria and their associated biofilms are major causative factors in eye infections, often resulting in blindness and presenting considerable global health challenges. Presently, mechano-bactericidal systems, which combine distinct topological geometries with mechanical forces to physically induce bacterial apoptosis, show promising potential. However, the physical interaction process between current mechano-bactericidal systems and bacteria is generally based on passive diffusion or Brownian motion and lacks the force required for biofilm penetration; thus, featuring low antibacterial efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!