Biodegradable polycarbonate-based ABA triblock copolyelectrolytes were synthesized and formulated into physically cross-linked hydrogels. These biocompatible, cationically, and anionically charged hydrogel materials exhibited pronounced shear-thinning behavior, making them useful for a variety of biomedical applications. For example, we investigated the antimicrobial activity of positively charged thiouronium functionalized hydrogels by microbial growth inhibition assays against several clinically relevant Gram-negative and Gram-positive bacteria. It is noteworthy that these hydrogels exhibited broad spectrum killing efficiencies approaching 100%, thereby rendering these thixotropic materials attractive for treatment of skin and other surface bound infections. Finally, cationic trimethylammonium containing hydrogels and anionic carboxylic acid functionalized hydrogels were utilized to sustain the release of negatively charged (diclofenac) and positively charged (vancomycin) therapeutics, respectively. Collectively, the present work introduces a simple method for formulating charged hydrogel materials that are capable of interacting with various analytes of interest through noncovalent interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.5b00527 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan. Electronic address:
Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
pH changes occur during bodily lesions, presenting an opportunity for leveraging pH-responsive delivery systems as signals for a targeted response. This review explores the design and application of pH-responsive delivery systems based on natural polysaccharides for the controlled release of bioactives. The article examines the development of diverse delivery carriers, including nanoparticles, nanofibers, nanogels, core-shell carriers, hydrogels, emulsions as well as liposomes and their capacity to respond to pH variations, enabling the precise and targeted delivery of bioactives within the human body.
View Article and Find Full Text PDFGels
December 2024
Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
Hydrogels like agarose have long been used as sieving media for the electrophoresis-based analysis of biopolymers. During gelation, the individual agarose strands tend to form hydrogen-bond mediated double-helical structures, allowing thermal reversibility and adjustable pore sizes for molecular sieving applications. The addition of tetrahydroxyborate to the agarose matrix results in transitional chemical cross-linking, offering an additional pore size adjusting option.
View Article and Find Full Text PDFGels
December 2024
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina.
In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by H high-resolution magic angle spinning (H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS).
View Article and Find Full Text PDFGels
November 2024
Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
Bio-based eco-friendly cellulose nanocrystals (CNCs) gain an increasing interest for diverse applications. We report the results of an investigation of hydrogels spontaneously formed by the self-assembly of carboxylated CNCs in the presence of CaCl using several complementary techniques: rheometry, isothermal titration calorimetry, FTIR-spectroscopy, cryo-electron microscopy, cryo-electron tomography, and polarized optical microscopy. Increasing CaCl concentration was shown to induce a strong increase in the storage modulus of CNC hydrogels accompanied by the growth of CNC aggregates included in the network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!