Water-Based Melanin Multilayer Thin Films with Broadband UV Absorption.

ACS Macro Lett

Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, Texas 77843, United States.

Published: March 2015

Natural melanin is difficult to process due to its poor solubility and poorly understood structure. Synthetic melanin has been produced more recently, which is dispersible in mildly alkaline water and has many of the same properties of natural melanin. In this study, thin films of synthetic melanin and poly(allylamine hydrochloride) were deposited layer-by-layer from dilute aqueous solutions in ambient conditions. This is likely the first time melanin has been deposited from water to produce a functional nanocoating. These films display broadband UV light absorption, absorbing over 63% of incident light that is most damaging to human eyes with a thickness of 108 nm. In an effort to demonstrate the utility of these melanin-based nanocoatings, a 30 bilayer film is shown to increase the useful life of a conductive poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) film by 550%. This novel method of depositing melanin should open the door to a variety of useful applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.5b00080DOI Listing

Publication Analysis

Top Keywords

thin films
8
natural melanin
8
synthetic melanin
8
melanin
6
water-based melanin
4
melanin multilayer
4
multilayer thin
4
films broadband
4
broadband absorption
4
absorption natural
4

Similar Publications

A Zn-doped SbTe flexible thin film with decoupled Seebeck coefficient and electrical conductivity band engineering.

Chem Sci

January 2025

Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong 518060 China

SbTe-based flexible thin films can be utilized in the fabrication of self-powered wearable devices due to their huge potential in thermoelectric performance. Although doping can significantly enhance the power factor value, the process of identifying suitable dopants is typically accompanied by numerous repeating experiments. Herein, we introduce Zn doping into thermally diffused p-type SbTe flexible thin films with a candidate dopant validated using the first-principles calculations.

View Article and Find Full Text PDF

A soda lime glass substrate is used for fabricating CuZnSnS (CZTS) thin films using copper (II) sulfide (CuS), zinc sulfide (ZnS), and tin sulfide (SnS) targets using an advanced co-sputtering deposition process. Following that, the films are annealed at 470 °C without sulfur (S). An algorithm based on the deposition rate of the previously specified targets set the co-sputtering condition, which maintains a deposition pressure of 5, 10, 15, and 20 mTorr.

View Article and Find Full Text PDF

We theoretically demonstrate that ponderomotive interactions near the electron cross-over can be used for aberration correction in ultrafast electron microscopes. Highly magnified electron shadow images from SiN thin films are utilized to visualize the distortions induced by spherical aberrations. Our simulations of electron-light interactions indicate that spherical aberrations can be compensated resulting in an aberration-free angle of 8.

View Article and Find Full Text PDF

Epsilon-near-zero (ENZ) materials, i.e., materials with a vanishing real part of the permittivity, have become an increasingly desirable platform for exploring linear and nonlinear optical phenomena in nanophotonic and on-chip environments.

View Article and Find Full Text PDF

Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!