Background: Rapeseed (Brassica napus) is the second largest oil crop worldwide. It is widely used in food, energy production and the chemical industry, as well as being an ornamental. Consequently, it has a large economic value and developmental potential. Waterlogging is an important abiotic stress that restricts plant growth and development. However, little is known about the molecular mechanisms underlying waterlogging tolerance in B. napus.

Results: In the present study, the physiological changes and transcriptomes of germination-stage rapeseed in response to waterlogging stress were investigated in the B. napus cultivar 'Zhongshuang 11' (ZS11) and its anthocyanin-more (am) mutant, which was identified in our previous study. The mutant showed stronger waterlogging tolerance compared with ZS11, and waterlogging stress significantly increased anthocyanin, soluble sugar and malondialdehyde contents and decreased chlorophyll contents in the mutant after 12 days of waterlogging. An RNA-seq analysis identified 1370 and 2336 differently expressed genes (DEGs) responding to waterlogging stress in ZS11 and am, respectively. An enrichment analysis revealed that the DEGs in ZS11 were predominately involved in carbohydrate metabolism, whereas those in the am mutant were particularly enriched in plant hormone signal transduction and response to endogenous stimulation. In total, 299 DEGs were identified as anthocyanin biosynthesis-related structural genes (24) and regulatory genes encoding transcription factors (275), which may explain the increased anthocyanin content in the am mutant. A total of 110 genes clustered in the plant hormone signal transduction pathway were also identified as DEGs, including 70 involved in auxin and ethylene signal transduction that were significantly changed in the mutant. Furthermore, the expression levels of 16 DEGs with putative roles in anthocyanin accumulation and biotic/abiotic stress responses were validated by quantitative real-time PCR as being consistent with the transcriptome profiles.

Conclusion: This study provides new insights into the molecular mechanisms of increased anthocyanin contents in rapeseed in response to waterlogging stress, which should be useful for reducing the damage caused by waterlogging stress and for further breeding new rapeseed varieties with high waterlogging tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123723PMC
http://dx.doi.org/10.1186/s13068-022-02155-5DOI Listing

Publication Analysis

Top Keywords

waterlogging stress
20
waterlogging tolerance
16
increased anthocyanin
12
signal transduction
12
waterlogging
11
mechanisms underlying
8
underlying waterlogging
8
anthocyanin-more mutant
8
molecular mechanisms
8
rapeseed response
8

Similar Publications

Background: Since the first description of eosinophilic esophagitis (EoE) as clinicopathologic syndrome three decades ago, considerable progress has been made to standardize and validate instruments to assess symptom severity, quality of life, endoscopic, and histologic activity for the purpose of randomized controlled trials (RCTs) and observational studies. Standardized assessment of EoE activity is crucial to be able to compare the results of therapeutic interventions and bring much needed therapies to patients. This review focuses on outcome assessment of disease activity in adults with EoE.

View Article and Find Full Text PDF

The Missing Link in Antiamyloid Therapy.

ACS Chem Neurosci

January 2025

Department of Health Service, Polyclinic, Sector 6, Jhajjar, Haryana 124103, India.

Alzheimer's disease (AD) impacts millions of elderly adults worldwide causing cognitive decline and severe deterioration of activities of daily life. The popular causal hypotheses for several decades include beta-amyloid (Aβ) deposition and tau hyperphosphorylation. AD research and more than 34% of clinical trials in AD are based on these two hypotheses.

View Article and Find Full Text PDF

As a representative agent of bicyclic antidepressants, venlafaxine (VEN) has become widely used worldwide and is frequently detected in surface waters with concentrations ranging from ng/L to µg/L. To evaluate the toxicological effects of such medications on aquatic species, studies on environmentally relevant concentrations are essential. Zebrafish were used as a model organism to assess growth and development in larvae and examine tissue accumulation, oxidative stress, and DNA methylation in adults.

View Article and Find Full Text PDF

Background: High levels of catecholamines are cardiotoxic and associated with stress-induced cardiomyopathies. Septic patients are routinely exposed to endogenously released and exogenously administered catecholamines, which may alter cardiac function and perfusion causing ischemia. Early during human septic shock, left ventricular ejection fraction (LVEF) decreases but normalizes in survivors over 7-10 days.

View Article and Find Full Text PDF

The nutritional status of fish is essential for its health, experimental studies, and aquaculture practices. The current study investigated the impact of food deprivation on biochemical parameters, histology of skin, gill, and kidney tissues, and ultrastructure of gills in Clarias batrachus. Fish were subjected to food deprivation for 2, 7, and 15 days resulting in (a) significant increase in plasma cortisol levels, (b) no significant changes in plasma osmolality and plasma glucose content, and (c) significant decrease in liver and muscle glycogen contents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!