A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning-based triage to identify low-severity patients with a short discharge length of stay in emergency department. | LitMetric

Machine learning-based triage to identify low-severity patients with a short discharge length of stay in emergency department.

BMC Emerg Med

Department of Bioinformatics and Medical Engineering, Asia University, No. 500, Liufeng Rd., Wufeng Dist., Taichung City, 413305, Taiwan.

Published: May 2022

Background: Overcrowding in emergency departments (ED) is a critical problem worldwide, and streaming can alleviate crowding to improve patient flows. Among triage scales, patients labeled as "triage level 3" or "urgent" generally comprise the majority, but there is no uniform criterion for classifying low-severity patients in this diverse population. Our aim is to establish a machine learning model for prediction of low-severity patients with short discharge length of stay (DLOS) in ED.

Methods: This was a retrospective study in the ED of China Medical University Hospital (CMUH) and Asia University Hospital (AUH) in Taiwan. Adult patients (aged over 20 years) with Taiwan Triage Acuity Scale level 3 were enrolled between 2018 and 2019. We used available information during triage to establish a machine learning model that can predict low-severity patients with short DLOS. To achieve this goal, we trained five models-CatBoost, XGBoost, decision tree, random forest, and logistic regression-by using large ED visit data and examined their performance in internal and external validation.

Results: For internal validation in CMUH, 33,986 patients (75.9%) had a short DLOS (shorter than 4 h), and for external validation in AUH, there were 13,269 (82.7%) patients with short DLOS. The best prediction model was CatBoost in internal validation, and area under the receiver operating cha racteristic curve (AUC) was 0.755 (95% confidence interval (CI): 0.743-0.767). Under the same threshold, XGBoost yielded the best performance, with an AUC value of 0.761 (95% CI: 0.742- 0.765) in external validation.

Conclusions: This is the first study to establish a machine learning model by applying triage information alone for prediction of short DLOS in ED with both internal and external validation. In future work, the models could be developed as an assisting tool in real-time triage to identify low-severity patients as fast track candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123815PMC
http://dx.doi.org/10.1186/s12873-022-00632-6DOI Listing

Publication Analysis

Top Keywords

low-severity patients
20
patients short
16
short dlos
16
establish machine
12
machine learning
12
learning model
12
patients
9
triage identify
8
identify low-severity
8
short discharge
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!