In this work, we reported a computational study to quantitatively determine the individual contributions of three candidate arrhythmic factors associated with Brugada Syndrome. In particular, we focused our analysis on the role of structural abnormalities, dispersion of repolarization, and size of the diseased region. We developed a human phenomenological model capable of replicating the action potential characteristics both in Brugada Syndrome and in healthy conditions. Inspired by physiological observations, we employed the phenomenological model in a 2D geometry resembling the pathological RVOT coupled with healthy epicardial tissue. We assessed the insurgence of sustained reentry as a function of electrophysiological and structural abnormalities. Our computational study indicates that both structural and repolarization abnormalities are essential to induce sustained reentry. Furthermore, our results suggest that neither dispersion of repolarization nor structural abnormalities are sufficient on their own to induce sustained reentry. It should be noted how our study seems to explain an arrhythmic mechanism that unifies the classic repolarization and depolarization hypotheses of the pathophysiology of the Brugada Syndrome. Finally, we believe that this work may offer a new perspective on the computational and clinical investigation of Brugada Syndrome and its arrhythmic behaviour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123016 | PMC |
http://dx.doi.org/10.1038/s41598-022-12239-9 | DOI Listing |
JACC Clin Electrophysiol
January 2025
National Cerebral and Cardiovascular Center, Suita, Japan.
JACC Clin Electrophysiol
January 2025
Fondazione Toscana "Gabriele Monasterio," Pisa, Italy; Scuola Superiore Sant'Anna, Pisa, Italy. Electronic address:
Eur Heart J Case Rep
January 2025
Echocardiography Department, Great Ormond Street Hospital for Children, Great Ormond Street, London WC1N 3JH, UK.
Background: Superior caval vein obstruction is a rare complication of endocardial pacing lead implantation that can result in a right to left shunt.
Case Summary: A 3-year-old child with type 2 Brugada syndrome presented with mild cyanosis post-endocardial pacing implantation due to evolutionary right superior caval vein obstruction. This obstruction resulted in a right to left shunt across a previously unrecognized patent levo-atrial cardinal vein associated with partial anomalous pulmonary venous drainage.
Pacing Clin Electrophysiol
January 2025
Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Background: This study aimed to compare inappropriate shock (IAS) rates between subcutaneous implantable cardioverter-defibrillator (S-ICD) and transvenous ICD (TV-ICD) in Brugada syndrome (BrS) patients and identify risk factors for IAS in S-ICD use.
Methods: We enrolled consecutive patients with BrS who underwent ICD implantation between 2013 and 2023. Data on clinical characteristics, S-ICD screening test data, and IAS occurrence were retrospectively analyzed.
Pediatr Neurol
January 2025
Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Pediatric Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
Background: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy associated with loss-of-function variants in the SCN1A gene. Although predominantly expressed in the central nervous system, SCN1A is also expressed in the heart, suggesting a potential link between neuronal and cardiac channelopathies. Additionally, DS carries a high risk of sudden unexpected death in epilepsy (SUDEP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!