Vaccine effectiveness is lower and wanes faster against infection and symptomatic disease caused by the omicron variant of SARS-CoV-2 than was observed with previous variants. Vaccine effectiveness against severe omicron disease, on average, is higher, but has shown variability, including rapid apparent waning, in some studies. Assessing vaccine effectiveness against omicron severe disease using hospital admission as a measure of severe disease has become more challenging because of omicron's attenuated intrinsic severity and its high prevalence of infection. Many hospital admissions likely occur among people with incidental omicron infection or among those with infection-induced exacerbation of chronic medical conditions. To address this challenge, the World Health Organization held a virtual meeting on March 15, 2022, to review evidence from several studies that assessed Covid-19 vaccine effectiveness against severe omicron disease using several outcome definitions. Data was shown from studies in South Africa, the United States, the United Kingdom and Qatar. Several approaches were proposed that better characterize vaccine protection against severe Covid-19 disease caused by the omicron variant than using hospitalization of omicron-infected persons to define severe disease. Using more specific definitions for severe respiratory Covid-19 disease, such as indicators of respiratory distress (e.g. oxygen requirement, mechanical ventilation, and ICU admission), showed higher vaccine effectiveness than against hospital admission. Second, vaccine effectiveness against progression from omicron infection to hospitalization, or severe disease, also showed higher vaccine protection. These approaches might better characterize vaccine performance against severe Covid-19 disease caused by omicron, as well as future variants that evade humoral immunity, than using hospitalization with omicron infection as an indicator of severe disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058052 | PMC |
http://dx.doi.org/10.1016/j.vaccine.2022.04.069 | DOI Listing |
Viruses
January 2025
Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
The emergence of new variants and diverse vaccination regimens have raised uncertainty about vaccine effectiveness against SARS-CoV-2. This study aims to investigate the impact of Omicron primo-/reinfection and primary vaccination schedules on the immunogenicity of an mRNA-based booster dose over a six-month period. We conducted a prospective cohort study to assess the durability and level of antibodies of 678 healthcare workers fully vaccinated against COVID-19.
View Article and Find Full Text PDFThe present study aimed to evaluate the vaccine effectiveness (VE) of different doses of an inactivated coronavirus disease 2019 (COVID-19) vaccine against Omicron BA.2.2 infection in Beijing, China, 2022.
View Article and Find Full Text PDFViruses
December 2024
Thomas H. Gosnell School for Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.
Vesicular Stomatitis Virus (VSV) has emerged as a promising candidate for various clinical applications, including vaccine development, virus pseudotyping, and gene delivery. Its broad host range, ease of propagation, and lack of pre-existing immunity in humans make it ideal for therapeutic use. VSV's potential as an oncolytic virus has garnered attention; however, resistance to VSV-mediated oncolysis has been observed in some cell lines and tumor types, limiting its effectiveness.
View Article and Find Full Text PDFViruses
December 2024
Applied Biotechnology Institute, California Polytechnic Tech Park, San Luis Obispo, CA 93407, USA.
Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!