Polyphenols are effective in eliminating amyloid-beta aggregations, the main hallmark of Alzheimer's disease. Various nano drugs and biomaterials based on polyphenolic compounds have been synthetized to treat or prevent Alzheimer's disease, and the main in-vitro approach to investigate the anti-Alzheimer's properties of materials, is the Thioflavin T assay. While useful it has drawbacks and in particular cannot always guarantee the accuracy of data, specifically in cases of polyphenolic compounds; thus, in this situation accurate results requires utilizing other assays along with Thioflavin T. In this experiment, we introduced the Z-scan technique as a complementary test for Thioflavin T assay. In this study, the anti-Alzheimer's properties of two polyphenols quercetin and fulvic acid were assessed in the presence and absences of silver nanoparticles at various concentrations, both via Z-scan technique and Thioflavin T assay, after which the two tests were aligned with each other. The polyphenols' non-linear refractive indices obtained by the Z-scan technique correlated well with their related fluorescence intensities from the Thioflavin T assay in such a way that, the smaller the magnitude of the non-linear refractive indices, the stronger the anti-amyloidogenic impact. Our work shows that Z-scan could be used along with Thioflavin T for enhanced investigation of polyphenols' anti-Alzheimer's properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2022.102914 | DOI Listing |
Life Med
February 2024
Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
Transmembrane protein 106B (TMEM106B), previously identified as a risk factor in frontotemporal lobar degeneration, has recently been detected to form fibrillar aggregates in the brains of patients with various neurodegenerative diseases (NDs) and normal elders. While the specifics of when and where TMEM106B fibrils accumulate in human brains, as well as their connection to aging and disease progression, remain poorly understood. Here, we identified an antibody (NBP1-91311) that directly binds to TMEM106B fibrils extracted from the brain and to Thioflavin S-positive TMEM106B fibrillar aggregates in brain sections.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Applied Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay.
View Article and Find Full Text PDFBiomedicines
January 2025
Perron Institute for Neurological and Translational Science, Nedlands 6009, Australia.
Background/objectives: The role of α-synuclein (α-syn) pathology in Parkinson's disease (PD) is well established; however, effective therapies remain elusive. Two mechanisms central to PD neurodegeneration are the intracellular aggregation of misfolded α-syn and the uptake of α-syn aggregates into neurons. Cationic arginine-rich peptides (CARPs) are an emerging class of molecule with multiple neuroprotective mechanisms of action, including protein stabilisation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China. Electronic address:
The self-assembly of rice glutelin (RG) into RG fibrils (RGFs) represents a promising strategy for enhancing its functional properties. In this study, we investigated the effects of ultrasonic pretreatment on the fibrillation kinetics, structural characteristics, and functional properties of RGFs. The results indicated that ultrasonic pretreatment facilitated the unfolding of RG, resulting in an increased H and β-sheet, thereby accelerating the formation of RGFs and enhancing the fibril conversion rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!