Scalable expansion of iPSC and their derivatives across multiple lineages.

Reprod Toxicol

Fraunhofer Project Center for Stem Cell Process Engineering, Fraunhofer Institute for Biomedical Engineering IBMT, Neunerplatz 2, 97082 Würzburg, Germany; Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66820 Sulzbach, Germany; Department of Molecular and Cellular Biotechnology, Saarland University, 66123 Saarbrücken, Germany; Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile. Electronic address:

Published: September 2022

Induced pluripotent stem cell (iPSC) technology enabled the production of pluripotent stem cell lines from somatic cells from a range of known genetic backgrounds. Their ability to differentiate and generate a wide variety of cell types has resulted in their use for various biomedical applications, including toxicity testing. Many of these iPSC lines are now registered in databases and stored in biobanks such as the European Bank for induced pluripotent Stem Cells (EBiSC), which can streamline the quality control and distribution of these individual lines. To generate the quantities of cells for banking and applications like high-throughput toxicity screening, scalable and robust methods need to be developed to enable the large-scale production of iPSCs. 3D suspension culture platforms are increasingly being used by stem cell researchers, owing to a higher cell output in a smaller footprint, as well as simpler scaling by increasing culture volume. Here we describe our strategies for successful scalable production of iPSCs using a benchtop bioreactor and incubator for 3D suspension cultures, while maintaining quality attributes expected of high-quality iPSC lines. Additionally, to meet the increasing demand for "ready-to-use" cell types, we report recent work to establish robust, scalable differentiation protocols to cardiac, neural, and hepatic fate to enable EBiSC to increase available research tools.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.reprotox.2022.05.007DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
12
stem cell
12
induced pluripotent
8
cell types
8
ipsc lines
8
production ipscs
8
cell
6
scalable
4
scalable expansion
4
ipsc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!