Environmental metal exposure has been associated with decreasing semen quality, but the effects of multiple metal exposure on seminal plasma metabolome remain obscure. In this study, semen and repeated urine samples from 551 volunteers were collected in Wuhan City. Heavy metals and trace elements were measured using inductively coupled plasma mass spectrometer, and seminal plasma metabolomes were acquired using liquid chromatography coupled with high-resolution mass spectrometry. Weighted gene co-expression network analysis showed more than half of the seminal plasma metals were associated with specific metabolite modules, whereas only a few urine metals presented weak associations, indicating that seminal plasma may be an ideal biological sample for male reproductive biomarker discovery and exposure risk assessment. Seminal plasma zinc (Zn) and selenium (Se) concentrations were significantly associated with 22 metabolites (e.g., glycerophospholipids, acyl-carnitines and amino acid derivatives). Among these metabolites, acyl-carnitines were positively associated with semen quality and sperm concentration. Moreover, acyl-carnitines were associated with both Zn and Se exposure, indicating the potential role of carnitine pathway in their toxicity mechanism. Our findings suggest that seminal plasma metabolome connects Zn and Se exposure and sperm concentrations in Chinese men of reproductive age.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155860 | DOI Listing |
Biol Trace Elem Res
January 2025
Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang 050071, Hebei, China.
Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, 22030, Turkey.
Genital tract infections are common causes of male infertility, and most of diagnosed men are asymptomatic. This study examined the effect of gallic acid (GA) against lipopolysaccharide (LPS)-induced testicular inflammation. Thirty-two Spraque Dawley, 2.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany.
Background: The recently identified swine inflammation and necrosis syndrome (SINS) affects tail, ears, teats, coronary bands, claws and heels of affected individuals. The primarily endogenous syndrome is based on vasculitis, thrombosis, and intimal proliferation, involving defence cells, interleukins, chemokines, and acute phase proteins and accompanied by alterations in clinical chemistry, metabolome, and liver transcriptome. The complexity of metabolic alterations and the influence of the boar led to hypothesize a polygenic architecture of SINS.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
Reproduction in males is one of the complicated processes that is mediated by many environmental factors, as well as by diet (e.g. supplements, nutritional value).
View Article and Find Full Text PDFDomest Anim Endocrinol
January 2025
BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:
This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!