Resveratrol (RES) is a widely-known natural polyphenol which is also contained by several dietary supplements. Large doses of RES can result in high micromolar levels of its sulfate and glucuronide conjugates in the circulation, due to the high presystemic metabolism of the parent polyphenol. Pharmacokinetic interactions of RES have been extensively studied, while only limited data are available regarding its metabolites. Therefore, in the current study, we examined the interactions of resveratrol-3-sulfate (R3S), resveratrol-3-glucuronide, and dihydroresveratrol (DHR; a metabolite produced by the colon microbiota) with human serum albumin (HSA), cytochrome P450 (CYP) enzymes, and organic anion transporting polypeptides (OATP) employing in vitro models. Our results demonstrated that R3S and R3G may play a major role in the RES-induced pharmacokinetic interactions: (1) R3S can strongly displace the site I marker warfarin from HSA; (2) R3G showed similarly strong inhibitory action on CYP3A4 to RES; (3) R3S proved to be similarly strong (OATP1B1/3) or even stronger (OATP1A2 and OATP2B1) inhibitor of OATPs tested than RES, while R3G and RES showed comparable inhibitory actions on OATP2B1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.113136 | DOI Listing |
FEBS Lett
May 2024
Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Resveratrol prevents various neurodegenerative diseases in animal models despite reaching only low nanomolar concentrations in the brain after oral administration. In this study, based on the quenching of intrinsic tryptophan fluorescence and molecular docking, we found that trans-resveratrol, its conjugates (glucuronide and sulfate), and dihydro-resveratrol (intestinal microbial metabolite) bind with high affinities (K, 0.2-2 nm) to the peptide G palindromic sequence (near glycosaminoglycan-binding motif) of the 67-kDa laminin receptor (67LR).
View Article and Find Full Text PDFBiomed Pharmacother
July 2022
Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
Resveratrol (RES) is a widely-known natural polyphenol which is also contained by several dietary supplements. Large doses of RES can result in high micromolar levels of its sulfate and glucuronide conjugates in the circulation, due to the high presystemic metabolism of the parent polyphenol. Pharmacokinetic interactions of RES have been extensively studied, while only limited data are available regarding its metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!