Controlled or accidental fires can impact agricultural soils amended with composted organic materials since high temperatures cause fast organic matter (OM) mineralization and soil properties modifications. During these events, potentially toxic elements (PTEs) associated with OM can be released and change their distribution and speciation thus becoming a threat to the environment and to crops. In this study, we investigated the changes of distribution and speciation of chromium in soils long-term amended with compost obtained from tannery sludges, after simulating fires of different intensity (300, 400 and 500 °C) likely to occur on agricultural soils. A combination of conventional soil chemical analyses and bulk and (sub)micro X-ray analyses allowed the observation of the formation of hexavalent chromium and changes of chromium speciation. Specifically, a strong decrease of Cr-OM associations was found with increasing temperature in favour of Cr-iron (hydr)oxides interactions and CaCrO formation. These data provide first evidence that fires can transform OM-stabilized Cr into more mobile, available and toxic Cr-forms potentially accessible for plant uptake, thus posing a risk for the food chain and the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129117 | DOI Listing |
ACS Nano
January 2025
Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States.
Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.
View Article and Find Full Text PDFThis study addresses the global issue of foodborne illness, specifically focusing on those resulting from the consumption of leafy green vegetables. It explores the rising trend of consuming minimally processed or raw foods and the imperative of maintaining safety standards starting at the preharvest stage to prevent pathogenic bacterial contamination. The study identifies soil and irrigation water as key sources of pathogens and emphasizes the need for strict preventive measures during production and preharvest.
View Article and Find Full Text PDFEcol Evol
January 2025
Department of Agricultural, Food and Environmental Sciences Università Politecnica delle Marche Ancona Italy.
This study investigates climate change impacts on spontaneous vegetation, focusing on the Mediterranean basin, a hotspot for climatic changes. Two case study areas, Monti Sibillini (central Italy, temperate) and Sidi Makhlouf (Southern Tunisia, arid), were selected for their contrasting climates and vegetation. Using WorldClim's CMCC-ESM2 climate model, future vegetation distribution was predicted for 2050 and 2080 under SSP 245 (optimistic) and 585 (pessimistic) scenarios.
View Article and Find Full Text PDFBiological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!