Microplastics distribution in bottom sediments of the Baltic Sea Proper.

Mar Pollut Bull

Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia.

Published: June 2022

An abundance of microplastics particles (0.2-5 mm, MPs) in bottom sediments is analyzed based on 53 samples (3 to 215 m deep) obtained in 8 cruises of research vessels across the Baltic Sea Proper in March-October 2015-2016. MPs content varied between stations from 103 up to 10,179 items kg d.w., with the bulk mean of 863 ± 1371 items kg d.w., showing a statistically significant increase with water depth. As many as 74.5% of MPs are of fibrous shape, followed by films (19.8%) and fragments (5.7%). The distributions of fibres, fragments, films, and different types of natural bottom sediments are significantly different, highlighting the specific behaviour of each of these kinds of bottom deposits. A statistically significant correlation between water depth and fibres content is found. Based on the analysis of oceanographic factors and sedimentological principles, an erosion/transition/accumulation pattern for fibres in the Baltic Sea Proper is outlined. Fibres can be considered as a specific type of "synthetic sediment", while principles of distribution of other MPs are not yet certain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2022.113743DOI Listing

Publication Analysis

Top Keywords

bottom sediments
12
baltic sea
12
sea proper
12
water depth
8
microplastics distribution
4
bottom
4
distribution bottom
4
sediments baltic
4
proper abundance
4
abundance microplastics
4

Similar Publications

Fibre Optic Method for Detecting Oil Fluorescence in Marine Sediments.

Sensors (Basel)

December 2024

Department of Operational Oceanography, Maritime Institute, Gdynia Maritime University, ul. Roberta de Plelo 20, 80-848 Gdańsk, Poland.

The aim of this study is to verify the possibility of detecting oil in the bottom sediment using a fibre optic system. The presence of oil is assessed on excitation-emission spectra obtained from spectral fluorescence signals of the sediment sample. A factory spectrofluorometer coupled with an experimental fibre optic measurement system was used.

View Article and Find Full Text PDF
Article Synopsis
  • Wind-induced currents play a crucial role in resuspending and transporting sediment in micro-tidal bays, particularly in heavily contaminated areas like Onsan Bay.
  • In-situ measurements using acoustic Doppler current profilers (ADCPs) showed that residual currents contributed over 70% of the total sediment flux, with surface sediments moving seaward and bottom sediments moving landward.
  • Northerly winds intensified these landward currents, suggesting they may increase sediment deposition in the bay, which has implications for managing sedimentation in coastal environments.
View Article and Find Full Text PDF

This study evaluates the influence of water current and suspended sediment concentration (SSC) on microplastic distribution in various mixing regimes of the Ashtamudi estuary, India. Microplastic abundance ranged from 3.2 to 53 items/L, with highest concentrations observed near the confluence of the river and the sea.

View Article and Find Full Text PDF

The Red Sea remains a largely under-explored basin, with the Northern Egyptian Red Sea requiring further investigation due to limited borehole data, sparse case studies, and poor seismic quality. A petroleum system, regional structural cross-section, and geological block diagrams integrating onshore fieldwork from Gebel Duwi and offshore subsurface geology were utilized to assess the hydrocarbon potential of the Northern Egyptian Red Sea (NERS). The findings highlight that pre- and syn-rift organic-rich source units in the NERS could generate oil and gas, similar to the capped reservoirs of the Southern Gulf of Suez.

View Article and Find Full Text PDF

Bacterial Diversity in the Different Ecological Niches Related to the Yonghwasil Pond (Republic of Korea).

Microorganisms

December 2024

Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 01797, Republic of Korea.

The bacteriome profile was studied in freshwater ecosystems within the Yonghwasil pond, situated at the National Institute of Ecology, Seocheon-gun, Chungcheongnam-do, central western Korea. Six samples from water, mud, and soil niches were assessed, specifically from lake water, bottom mud (sediment), and root-soil samples of Bulrush, wild rice, Reed, and Korean Willow. Notably, the phylum exhibited an upward trend moving from water to mud to soil samples, whereas showed a contrasting decrease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!