A novel distal radical rearrangement of alkoxyphosphine is developed for the first time and applied to the regioselective radical fluoroalkylphosphorylation of unactivated olefins. By employing a one-pot two-step reaction of (bis)homoallylic alcohols, organophosphine chlorides, and fluoroalkyl iodides under CFL (compact fluorescence light) irradiation, a series of fluoroalkylphosphorylated alkyl iodides and alcohols are easily synthesized by regiospecific installing a phosphonyl onto the inner carbon of terminal olefins and further iodination/hydroxylation. Mechanism studies reveal that the migration undergoes a distinctive radical cyclization/β-scission on the lone electron pair of phosphorus, resulting in C-P bond formation and C-O bond cleavage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202203398 | DOI Listing |
Angew Chem Int Ed Engl
July 2022
State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
A novel distal radical rearrangement of alkoxyphosphine is developed for the first time and applied to the regioselective radical fluoroalkylphosphorylation of unactivated olefins. By employing a one-pot two-step reaction of (bis)homoallylic alcohols, organophosphine chlorides, and fluoroalkyl iodides under CFL (compact fluorescence light) irradiation, a series of fluoroalkylphosphorylated alkyl iodides and alcohols are easily synthesized by regiospecific installing a phosphonyl onto the inner carbon of terminal olefins and further iodination/hydroxylation. Mechanism studies reveal that the migration undergoes a distinctive radical cyclization/β-scission on the lone electron pair of phosphorus, resulting in C-P bond formation and C-O bond cleavage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!