A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. | LitMetric

Long-term high-fidelity electroencephalogram (EEG) recordings are critical for clinical and brain science applications. Conductive liquid-like or solid-like wet interface materials have been conventionally used as reliable interfaces for EEG recording. However, because of their simplex liquid or solid phase, electrodes with them as interfaces confront inadequate dynamic adaptability to hairy scalp, which makes it challenging to maintain stable and efficient contact of electrodes with scalp for long-term EEG recording. Here, we develop an on-skin paintable conductive biogel that shows temperature-controlled reversible fluid-gel transition to address the abovementioned limitation. This phase transition endows the biogel with unique on-skin paintability and in situ gelatinization, establishing conformal contact and dynamic compliance of electrodes with hairy scalp. The biogel is demonstrated as an efficient interface for long-term high-quality EEG recording over several days and for the high-performance capture and classification of evoked potentials. The paintable biogel offers a biocompatible and long-term reliable interface for EEG-based systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122322PMC
http://dx.doi.org/10.1126/sciadv.abo1396DOI Listing

Publication Analysis

Top Keywords

eeg recording
12
on-skin paintable
8
paintable biogel
8
long-term high-fidelity
8
high-fidelity electroencephalogram
8
hairy scalp
8
biogel
5
long-term
5
biogel long-term
4
recording
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!