In their recent correspondence, Jie et al. strongly defend that the DE cell population they discovered are always dual lineage co-expressing cells and not complexes of B cells and T cells, which we have previously described as frequently present in single-cell RNA sequencing data. Here, we respond to the specific arguments made in their correspondence. Specifically, we demonstrate that the presence of a gene signature in a given cell population is not enough to ascertain that it does not contain cell-cell complexes, or that it represents a biologically distinct cell type. We also show that the gene signature of DE cells contains several genes from the myeloid lineage, suggesting either that their DE cells are a triple-lineage co-expressing cell, or a three-component cell aggregate. Finally, we identify multiple transcriptomic features of DE cells that correspond to B cell-T cell complexes, namely the presence of lower average expression of B- and T-cell specific genes, and a higher number of detected genes per cell. Taken together, our results demonstrate that solely based on their scRNAseq profile, it is not possible to ascertain that DE cells are dual expressing cells and not cell-cell complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049842PMC
http://dx.doi.org/10.1002/cyto.a.24656DOI Listing

Publication Analysis

Top Keywords

cell-cell complexes
12
cells
9
dual lineage
8
cell population
8
gene signature
8
cell
7
complexes
5
distinguishing cell-cell
4
complexes dual
4
lineage cells
4

Similar Publications

Cell clustering is an essential step in uncovering cellular architectures in single cell RNA-sequencing (scRNA-seq) data. However, the existing cell clustering approaches are not well designed to dissect complex structures of cellular landscapes at a finer resolution. Here, we develop a multi-scale clustering (MSC) approach to construct sparse cell-cell correlation network for identifying de novo cell types and subtypes at multiscale resolution in an unsupervised manner.

View Article and Find Full Text PDF

Spatial Transcriptomics: Biotechnologies, Computational Tools, and Neuroscience Applications.

Small Methods

January 2025

Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.

Spatial transcriptomics (ST) represents a revolutionary approach in molecular biology, providing unprecedented insights into the spatial organization of gene expression within tissues. This review aims to elucidate advancements in ST technologies, their computational tools, and their pivotal applications in neuroscience. It is begun with a historical overview, tracing the evolution from early image-based techniques to contemporary sequence-based methods.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.

View Article and Find Full Text PDF

Assembly of tight junction belts by ZO1 surface condensation and local actin polymerization.

Dev Cell

December 2024

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Technische Universität Dresden, Biotechnologisches Zentrum, Center for Molecular and Cellular Bioengineering (CMCB), Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany. Electronic address:

Tight junctions play an essential role in sealing tissues, by forming belts of adhesion strands around cellular perimeters. Recent work has shown that the condensation of ZO1 scaffold proteins is required for tight junction assembly. However, the mechanisms by which junctional condensates initiate at cell-cell contacts and elongate around cell perimeters remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!