Aggravated by human and industrial activities, heavy metal pollution has become a severe problem, causing widespread concern in society, and cannot be ignored. Herein, a graphene/gold nanoparticle-hybrid (AuNPs/ERGO) was proposed and synthesized by electrochemical methods. Based on the AuNPs/ERGO hybrid, a novel electrochemical sensing platform was established and successfully applied for the selective, quantitative detection of Hg, taking advantage of the well-established anodic stripping voltammetry (ASV). This hybrid material not only increases the surface area and charge transfer rate but also provides more active sites for Hg deposition due to the formation of homogeneous, high density and monodispersed AuNPs on the ERGO film. The prepared AuNPs/ERGO hybrid was modified on a glassy carbon electrode (GCE) to detect Hg with a linear range from 0.5 to 20 μg L and a low limit of detection (LOD) of 0.06 μg L. The selectivity and stability of the as-prepared electrode were investigated and showed promising results. In addition, a screen-printed carbon electrode (SPCE) was also employed to verify the practical application ability of our assay with an excellent performance, which presents a bright application prospect for Hg detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2ay00413e | DOI Listing |
Bioelectrochemistry
January 2025
The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China. Electronic address:
To provide accurate diagnostic evidence for early hepatitis B virus (HBV) infection-related diseases, this study targeted HBV DNA as an analyte, where a sandwich-type electrochemical DNA sensor based on gold nanoparticles/reduced graphene oxide (Au NPs/ERGO) and cerium oxide/gold-platinum nanoparticles (CeO/AuPt NPs) was constructed. Au NPs/ERGO composite nanomaterials were first synthesized on the surface of a glass carbon electrode using electrochemical co-reduction, which significantly improved the specific surface area and electrical conductivity of the electrode. Further specific hybridization of target HBV-DNA was performed by combining capture probe DNA (S1-DNA) bound to AuNPs/ERGO with CeO/AuPt modified signal probe DNA (S2-DNA).
View Article and Find Full Text PDFAnal Methods
June 2022
Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China.
Aggravated by human and industrial activities, heavy metal pollution has become a severe problem, causing widespread concern in society, and cannot be ignored. Herein, a graphene/gold nanoparticle-hybrid (AuNPs/ERGO) was proposed and synthesized by electrochemical methods. Based on the AuNPs/ERGO hybrid, a novel electrochemical sensing platform was established and successfully applied for the selective, quantitative detection of Hg, taking advantage of the well-established anodic stripping voltammetry (ASV).
View Article and Find Full Text PDFBiosens Bioelectron
October 2018
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China. Electronic address:
In the paper, a triple-amplified biosensor was built for the purpose of ultrasensitive methyltransferase (Dam MTase) activity detection and inhibitor screening based on in-situ synthesized silver nanoclusters (AgNCs) as signal probes to provide amplified current signal coupling with gold nanoparticles/electrochemical reduced graphene oxide (AuNPs/ERGO) hybrids and hybridization chain reactions (HCR) amplification strategy. For biosensor preparation, the AuNPs/ERGO hybrids were firstly generated on the electrode surface by electrochemical co-reduction method, then the ds-DNA structures which comprised the specific recognition sequences (5'-G-A-T-C-3') of the Dam MTase and the restrictive endonuclease DpnI were formed on the electrode by the hybridization of the assistant DNA with the capture DNA. The presence of Dam MTase methylated partial ds-DNA structures on the electrode which could be digested by DpnI and could not undergo HCR process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!