Background: Patients at risk of developing a disease have to be identified at an early stage to enable prevention. One way of early detection is the use of machine learning based prediction models trained on electronic health records.

Objectives: The aim of this project was to develop a software solution to predict cardiovascular and nephrological events using machine learning models. In addition, a risk verification interface for health care professionals was established.

Methods: In order to meet the requirements, different tools were analysed. Based on this, a software architecture was created, which was designed to be as modular as possible.

Results: A software was realised that is able to automatically calculate and display risks using machine learning models. Furthermore, predictions can be verified via an interface adapted to the need of health care professionals, which shows data required for prediction.

Conclusion: Due to the modularised software architecture and the status-based calculation process, different technologies could be applied. This facilitates the installation of the software at multiple health care providers, for which adjustments need to be carried out at one part of the software only.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI220379DOI Listing

Publication Analysis

Top Keywords

machine learning
16
health care
12
learning based
8
learning models
8
care professionals
8
software architecture
8
software
6
development architecture
4
architecture implement
4
machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!