Introduction: Spermatogonial stem cells (SSC), also referred to as undifferentiated spermatogonia, are the germline stem cells responsible for continuous spermatogenesis throughout a male's life. They are, therefore, an ideal target for gene editing. Previously, SSC from animal testis have been isolated and transplanted to homologous recipients resulting in the successful reestablishment of donor-derived spermatogenesis.

Methods: Enhanced green fluorescent protein (eGFP) gene transfection into goat SSC was evaluated using liposomal carriers and electroporation. The cells were isolated from the prepubertal Galla goats testis cultured in serum-free defined media and transfected with the eGFP gene. Green fluorescing of SSC colonies indicated transfection.

Results: The use of lipofectamine stem reagent and lipofectamine 2000 carriers resulted in more SSC colonies expressing the eGFP gene (25.25% and 22.25%, respectively). Electroporation resulted in 15% ± 0.54 eGFP expressing SSC colonies. Furthermore, cell viability was higher in lipofectamine transfection (55% ± 0.21) as compared to electroporation (38% ± 0.14).

Conclusion: These results indicated that lipofectamine was more effective in eGFP gene transfer into SSC. The successful transient transfection points to a possibility of transfecting transgenes into male germ cells in genetic engineering programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113451PMC
http://dx.doi.org/10.2147/SCCAA.S356588DOI Listing

Publication Analysis

Top Keywords

egfp gene
16
ssc colonies
12
transfection goat
8
stem cells
8
ssc
7
lipofectamine
5
gene
5
egfp
5
comparative efficiency
4
efficiency vitro
4

Similar Publications

Newcastle disease virus (NDV) is an ideal model for exploring the mechanisms of the virus; it is also an optimal vector for developing vector vaccines and for cancer therapy. A reverse genetic system of NDV Mukteswar strain controlled by eukaryotic cellular RNA polymerase II promoter was established by reverse genetics technology. Based on the reverse genetic system, an open reading frame of the enhanced green fluorescent protein (EGFP) gene be inserted between the P and M genes of the viral genome and flanked with the gene start (GS) sequence and gene end (GE) sequence to form an independent transcription unit.

View Article and Find Full Text PDF

To prevent H9N2 avian influenza virus (AIV) and Avian metapneumonovirus/C (aMPV/C) infections, we constructed recombinant aMPV/C viruses expressing the HA protein of H9N2 AIV. In addition, EGFP was inserted into the intermediate non-coding region of P-M protein in the aMPV/C genome using a reverse genetic system. The conditions for rescuing the recombinant virus were enhanced followed by insertion of the H9N2 AIV HA gene into the same location in the aMPV/C.

View Article and Find Full Text PDF

Molecular and genetic techniques now allow selective tagging and manipulation of the population of neurons, often referred to as "engram cells," that were active during a specific experience. One common approach to labeling these cells is to use the transgenic mouse (TetTag). In addition to tagging cells active during learning, it is common to examine the reactivation of these cells using immediate early gene (IEG) expression as an index of neural activity.

View Article and Find Full Text PDF

Effect of CHO cell line constructed with CMAH gene-directed integration on the recombinant protein expression.

Int J Biol Macromol

December 2024

International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China. Electronic address:

Chinese hamster ovary (CHO) cells are the most widely used platform for recombinant therapeutic protein (RTP) production. Traditionally, the development of CHO cell lines has mainly depended on random integration of transgenes into the genome, which is not conducive to stable long-term expression. Cytidine monophosphate N-acetylneuraminic acid hydroxylase (CMAH) is expressed in CHO cells and produces N-hydroxyacetylneuraminic acid, which may cause a human immune response.

View Article and Find Full Text PDF

Characterization and functional analysis of interleukin-6 and its receptor subunits (IL-6Rα and IL-6Rβ) in the yellow drum, Nibea alibiflora.

Dev Comp Immunol

December 2024

National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China. Electronic address:

Interleukin 6 (IL-6) is one of the cytokines found to be multifunctional and biologically effective, regulating immune and inflammatory response by interacting with receptors to transmit signals. In this study, the full-length cDNAs of IL-6 (named as NaIL-6) and its receptors IL-6R and gp130 (named as NaIL-6Rα and NaIL-6Rβ) of Nibea albiflora were acquired and they possessed the typical symbolic motifs similar to its teleost orthologues in multiple sequence comparisons. The phylogenetic trees showed that NaIL-6 and its receptors clustered with their counterparts in bony fish, and had the closest affinity to Larimichthys crocea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!