Dispersal governs microbial biogeography, but the rates and mechanisms of dispersal remain poorly characterized for most microbial taxa. Dispersal limitation is driven by limits on dissemination and establishment, respectively. Elevation gradients create striking patterns of biogeography because they produce steep environmental gradients at small spatial scales, and these gradients offer a powerful tool to examine mechanisms of dispersal limitation. We focus on , a bacterial genus common to soil, by using a taxon-specific phylogenetic marker, the RNA polymerase-encoding gene. By targeting , we assess dispersal limitation at finer phylogenetic resolution than is possible using whole community analyses. We characterized diversity at local spatial scales (100 to 3,000 m) in two temperate forest sites located in the Adirondacks region of New York State: Woods Lake (<100 m elevation change), and Whiteface Mountain (>1,000 m elevation change). Beta diversity varied considerably at both locations, indicative of dispersal limitation acting at local spatial scales, but beta diversity was significantly higher at Whiteface Mountain. Beta diversity varied across elevation at Whiteface Mountain, being lowest at the mountain's base. We show that taxa exhibit elevational preferences, and these preferences are phylogenetically conserved. These results indicate that habitat preferences influence biogeography and suggest that barriers to establishment structure communities at higher elevations. These data illustrate that biogeography is governed by dispersal limitation resulting from a complex mixture of stochastic and deterministic processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113539 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.856263 | DOI Listing |
Anal Methods
January 2025
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
In this work, a hydrophilic Eu-based ratiometric fluorescent nanosensor (PAAC-Eu) was developed for Cu ion detection in aqueous solutions and imaging in living cells. The sensor was prepared a simple one-step reaction at room temperature, leveraging the synergistic coordination of commercially accessible polyacrylic acid (PAA) and coumarin-3-carboxylic acid (CCAH) with Eu ions. PAAC-Eu was easy to disperse in aqueous media and exhibited two characteristic emission bands at 406 nm and 618 nm, respectively, upon excitation at 350 nm.
View Article and Find Full Text PDFJ Chem Phys
January 2025
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, People's Republic of China.
The electrochemical property of Mo2C nanoparticles (NPs) depends on the structure and crystal planes. Herein, Mo2C nanoparticles were prepared and dispersed on carbon nanosheets by the construction of a biomass-derived carbon precursor, and the exposed dual crystal planes were also controlled by optimal conditions. The structure, compositions, and morphology of the carbon-based Mo2C were characterized, and the Mo2C NPs were well dispersed on the carbon nanosheets.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China.
Using CO as the C1 source for N-formylation of amine is a crucial energy-storage pathway to address the greenhouse effect while generating high-value-added chemicals but is limited by the activation of inert molecules. Herein, a dual active site catalyst with high CO activation and dihydrogen dissociation capacity was fabricated by incorporating a Schiff base and Au nanoparticles (NPs) on silicon dioxide (SiO). The modification of the Schiff base not only provides an alkaline environment for CO absorption but also stabilizes Au NPs in a small and highly dispersed state, which regulates the electronic density of the metal for excellent H cleavage.
View Article and Find Full Text PDFJ Genet
January 2025
1Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
The Brownstripe Snapper, (Quoy and Gaimard, 1824) is a commercially important snapper extensively caught in Malaysia. We examined genetic diversity, population connectivity, and historical demographics of the , off the eastern coast of peninsular Malaysia based on an 817 bp region of the mtDNA control region sequences. Maximum likelihood gene trees demonstrated that the populations under study had limited structuring and formed a single panmictic population that lacks support for internal clades.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Colon cancer is a major global health threat. Early detection and treatment are crucial for improving survival rates. Conventional methods, like colonoscopies and CT scans, have limitations, emphasizing the need for innovative strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!