The gut-brain axis has presented a valuable new dynamic in the treatment of cancer and central nervous system (CNS) diseases. However, little is known about the potential role of this axis in neuro-oncology. The goal of this review is to highlight potential implications of the gut-brain axis in neuro-oncology, in particular gliomas, and future areas of research. The gut-brain axis is a well-established biochemical signaling axis that has been associated with various CNS diseases. In neuro-oncology, recent studies have described gut microbiome differences in tumor-bearing mice and glioma patients compared to controls. These differences in the composition of the microbiome are expected to impact the metabolic functionality of each microbiome. The effects of antibiotics on the microbiome may affect tumor growth and modulate the immune system in tumor-bearing mice. Preliminary studies have shown that the gut microbiome might influence PD-L1 response in glioma-bearing mice, as previously observed in other non-CNS cancers. Groundbreaking studies have identified intratumoral bacterial DNA in several cancers including high-grade glioma. The gut microbiome and its manipulation represent a new and relatively unexplored area that could be utilized to enhance the effectiveness of therapy in glioma. Further mechanistic studies of this therapeutic strategy are needed to assess its clinical relevance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113089 | PMC |
http://dx.doi.org/10.1093/noajnl/vdac054 | DOI Listing |
BMC Nutr
January 2025
Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany.
Background: Obesity is a multifactorial disease reaching pandemic proportions with increasing healthcare costs, advocating the development of better prevention and treatment strategies. Previous research indicates that the gut microbiome plays an important role in metabolic, hormonal, and neuronal cross-talk underlying eating behavior. We therefore aim to examine the effects of prebiotic and neurocognitive behavioral interventions on food decision-making and to assay the underlying mechanisms in a Randomized Controlled Trial (RCT).
View Article and Find Full Text PDFLife Sci
January 2025
Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Chunilal Bhawan, 168, Maniktala Main Rd, Kolkata, West Bengal 700054, India. Electronic address:
Aims: Gut dysbiosis modulates CNS complications and cognitive decline through the gut-brain axis. The study aims to investigate the molecular mechanisms involved in gut dysbiosis-associated cognitive changes and the potential effects of probiotics in high fat-high carbohydrate diet-induced gut dysbiosis-associated neurodegeneration.
Materials And Methods: We used high fat, high-carbohydrate diet (HFHCD) and high-fat diet (HFD) to induce gut dysbiosis-associated neurodegeneration in C57BL/6 mice.
Neurobiol Dis
January 2025
Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA. Electronic address:
Parkinson's Disease (PD) is a multisystem disorder in which dysregulated neuroimmune crosstalk and inflammatory relay via the gut-blood-brain axis have been implicated in PD pathogenesis. Although alterations in circulating inflammatory cytokines and reactive oxygen species (ROS) have been associated with PD, no biomarkers have been identified that predict clinical progression or disease outcome. Gastrointestinal (GI) dysfunction, which involves perturbation of the underlying immune system, is an early and often-overlooked symptom that affects up to 80 % of individuals living with PD.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The interplay between the intestinal microbiota and metabolites is believed to influence brain function and the pathogenesis of neurodegenerative conditions through the microbe-gut-brain axis. Sika deer antler protein possesses neuroprotective properties; however, the precise mechanism by which it improves AD remains unclear.
View Article and Find Full Text PDFJ Hepatol
January 2025
Division of Gastroenterology and Hepatology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA.
Background: Preventing hepatic encephalopathy (HE) recurrence in cirrhosis, which is associated with an altered gut-liver-brain axis, is an unmet need. Fecal microbiota transplantation (FMT) is beneficial in phase-1 studies, but route and dose-related questions remain.
Methods: We performed a phase-2 randomized, placebo-controlled, double-blind, clinical trial of capsule and enema FMT in cirrhosis and HE on lactulose and rifaximin.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!