Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113093 | PMC |
http://dx.doi.org/10.1093/nsr/nwab095 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials and Energy, Lanzhou University (LZU), Lanzhou 730000, China.
Complementary neural network circuits combining multifunctional high-performance p-type with n-type organic artificial synapses satisfy sophisticated applications such as image cognition and prosthesis control. However, implementing the dual-modal memory features that are both volatile and nonvolatile in a synaptic transistor is challenging. Herein, for the first time, we propose a single vertical n-type organic synaptic transistor (VNOST) with a novel polymeric organic mixed ionic-electronic conductor as the core channel material to achieve dual-modal synaptic learning/memory behaviors at different operating current densities via the formation of an electric double layer and the reversible ion doping.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China.
The management of chronic infected wounds remains a significant clinical challenge, largely due to the deficiency of optimal wound dressings with adequate mechanical strength, appropriate adhesiveness, and efficient sustainable antibacterial, reactive oxygen species (ROS) scavenging, pro-angiogenesis, and immunomodulation properties. To address such a dilemma, we employed a simple and facile strategy to utilize resveratrol (RSV) as a functional component to mediate hydrogel gelation in this study. The structure of this obtained hydrogel was supported by a multibond network, which not only endowed the resultant product with superior mechanical strength and moderate adhesiveness but also effectively prolonged the bioavailability of RSV.
View Article and Find Full Text PDFACS Nano
January 2025
International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China.
Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted.
View Article and Find Full Text PDFACS Nano
January 2025
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China.
Potassium metal batteries (KMBs) hold promise for stationary energy storage with certain cost and resource merits. Nevertheless, their practicability is greatly handicapped by dendrite-related anodes, and the target design of specialized separators to boost anode safety is in its nascent stage. Here, we develop a thermally robust biopolymeric separator customized via a solvent-exchange and amino-siloxane decoration strategy to render durable and safe KMBs.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002 PR China. Electronic address:
Cobalt-nickel metal-organic framework/activated carbon (MOF/AC) composites with tunable flower-like architectures were synthesized via a straightforward hydrothermal method, utilizing activated carbon as a structural and functional modifier. This modification increased the surface area from 20.3 m/g to 164.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!