Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper studies both the thermal and mechanical behavior of brake system models in the case of the emergency braking of a mine hoist model. Using a step-by-step approach inspired by studies conducted on small brake systems with high rotation speeds specific to road and rail vehicles, a comparative analysis using a computer simulation was performed for the two types of brakes of a mine hoist system. A Solidworks model was built for two configurations: the drum-and-shoe and the disc-and-pads, and it was imported to COMSOL Multiphysics, where the material properties and simulation parameters were defined. Simulations were performed for each configuration, first using a Heat transfer module in the solids to investigate the frictional heat. The results showed the locations of the hot points on the disc and on the drum, with the surface temperature reaching 97 °C on the disc and 115 to 159 °C on the drum. Next, simulations using a Structural Mechanics module were run to obtain the stress and deformation induced by the heat generated during braking. The von Mises stress of the drum-and-shoe brake occurred on the external surface of the drum and had a value of 2 × 10 N/m. For the disc-and-pad brake, the stress occurred towards the edges of the brake pad contact and was 4 × 10 N/m. Both values were under the yield stress of the passive brake element material. Regarding the deformations, for the drum-and-shoe brake, it appeared towards the outer boundary of the drum, being 0.45 mm, and for the disc-and-pad brake, it was situated at the external edge of the disc, being 0.25 mm. COMSOL Multiphysics allowed the evaluation of the thermo-mechanical behavior using noninvasive techniques since actual emergency braking testing on a working mine hoisting installation is not possible because of safety and logistic concerns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103550 | PMC |
http://dx.doi.org/10.3390/ma15093363 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!