A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method. | LitMetric

The comprehensive properties of high-entropy alloys (HEAs) are highly-dependent on their phases. Although a large number of machine learning (ML) algorithms has been successfully applied to the phase prediction of HEAs, the accuracies among different ML algorithms based on the same dataset vary significantly. Therefore, selection of an efficient ML algorithm would significantly reduce the number and cost of the experiments. In this work, phase prediction of HEAs (PPH) is proposed by integrating criterion and machine learning recommendation method (MLRM). First, a meta-knowledge table based on characteristics of HEAs and performance of candidate algorithms is established, and meta-learning based on the meta-knowledge table is adopted to recommend an algorithm with desirable accuracy. Secondly, an MLRM based on improved meta-learning is engineered to recommend a more desirable algorithm for phase prediction. Finally, considering poor interpretability and generalization of single ML algorithms, a PPH combining the advantages of MLRM and criterion is proposed to improve the accuracy of phase prediction. The PPH is validated by 902 samples from 12 datasets, including 405 quinary HEAs, 359 senary HEAs, and 138 septenary HEAs. The experimental results shows that the PPH achieves performance than the traditional meta-learning method. The average prediction accuracy of PPH in all, quinary, senary, and septenary HEAs is 91.6%, 94.3%, 93.1%, and 95.8%, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105637PMC
http://dx.doi.org/10.3390/ma15093321DOI Listing

Publication Analysis

Top Keywords

phase prediction
20
machine learning
12
high-entropy alloys
8
integrating criterion
8
criterion machine
8
learning recommendation
8
recommendation method
8
heas
8
prediction heas
8
meta-knowledge table
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!