Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Uniform polyaniline (PANI) nanotubes were synthesized by a self-assembly method under relatively dilute hydrochloric acid (HCl) solution. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis-NIR spectroscopy were employed to characterize the morphology and molecular structure of the PANI products. SEM images show that the PANI nanotubes have uniform morphology and form compact coating on the substrate surface. For comparison, aggregated PANI was also synthesized by conventional polymerization method. The performance of the PANI products on carbon steel was studied using eletrochemical measurement and immersion corrosion experiment in 3.5 wt% NaCl aqueous solution. The corrosion potentials of carbon steel samples increase by 0.196 V and 0.060 V after coated with PANI nanotubes and aggregated PANI, respectively, and the corrosion currents density decrease by about 76.32% and 36.64%, respectively. The 6-day immersion experiment showed that the carbon steel samples coated by PANI nanotubes showed more excellent anticorrosion performance, because the more compact coating formed by PANI nanotubes may inhibit the corrosion process between the anodic and cathodic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104655 | PMC |
http://dx.doi.org/10.3390/ma15093192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!