Magnesium (Mg) alloy has attracted significant attention as a bioresorbable scaffold for use as a next-generation stent because of its mechanical properties and biocompatibility. However, Mg alloy quickly degrades in the physiological environment. In this study, we investigated whether applying a parylene C coating can improve the corrosion resistance of a Mg alloy stent, which is made of 'Original ZM10', free of aluminum and rare earth elements. The coating exhibited a smooth surface with no large cracks, even after balloon expansion of the stent, and improved the corrosion resistance of the stent in cell culture medium. In particular, the parylene C coating of a hydrofluoric acid-treated Mg alloy stent led to excellent corrosion resistance. In addition, the parylene C coating did not affect a polymer layer consisting of poly(ε-caprolactone) and poly(D,L-lactic acid) applied as an additional coating for the drug release to suppress restenosis. Parylene C is a promising surface coating for bioresorbable Mg alloy stents for clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102321 | PMC |
http://dx.doi.org/10.3390/ma15093132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!