Metal inert gas (MIG) welding is one of the processes most commonly used for joining metals, especially for joining aluminum and its alloys. The application of a pulsed current in an electric arc allows better controllability of the molten droplets and the arc transition, which subsequently leads to welds with characteristic flaky joints of better quality. In this paper, the optimization of parameters for welding aluminum alloys using the synchropulse welding process is investigated. By observing the input variables that have the greatest influence on the change in appearance of the welding current characteristics (delta wire feed from 0.1 to 6.0 m/min, frequency F from 0.5 to 3 Hz, duty cycle from 10% to 90%), it is possible to perform an optimization to achieve the desired output values. The output variables of the experiments are defined as insufficient/excessive throat thickness (mm), depth of penetration (mm), and weld width (mm); and for the desired quality of the welded joint the most acceptable range of its values is selected, the numerical optimization implementation. The experiment has shown that the delta wire feed has the greatest effect on the observed properties, while the influence of frequency F and duty cycle is somewhat smaller, but the factors responsible for the observed output properties are still significant. From all this, it is possible to select specific values of these input variables to define the best possible observed properties and to determine the characteristics of the defined mathematical models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101914PMC
http://dx.doi.org/10.3390/ma15093078DOI Listing

Publication Analysis

Top Keywords

mig welding
8
welding process
8
parameters welding
8
aluminum alloys
8
input variables
8
delta wire
8
wire feed
8
frequency duty
8
duty cycle
8
observed properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!