Thermal energy storage technology is an important topic, as it enables renewable energy technology to be available 24/7 and under different weather conditions. Phase changing materials (PCM) are key players in thermal energy storage, being the most economic among those available with adjustable thermal properties. Paraffin wax (PW) is one of the best materials used in industrial processes to enhance thermal storage. However, the low thermal conductivity of PW prevents its thermal application. In this study, we successfully modified PW based on multi-walled carbon nanotubes (MWCNT) with different concentrations of TiO-3, 5 and 7 wt.%. The morphology of PCM and its relationship with the chemical structure and stability were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and Thermogravimetric analysis (TGA). As a result, the composites achieved a highest latent heat enthalpy of 176 J/g, in addition to enhanced thermal stability after 15 thermal cycles, and reliability, with a slight change in latent heat observed when using a differential scanning calorimeter (DSC). The thermal conductivity of the composites could significantly be enhanced by 100%. Compared to pure paraffin, the PCM composites developed in this study exhibited an excellent preference for thermal energy storage and possessed low cost, high reliability, and phase change properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100833PMC
http://dx.doi.org/10.3390/ma15093063DOI Listing

Publication Analysis

Top Keywords

thermal energy
16
energy storage
16
thermal
11
phase change
8
thermal conductivity
8
latent heat
8
energy
5
storage
5
performance nanocomposites
4
nanocomposites phase
4

Similar Publications

One of the key surveillance strategies for the early detection of an African swine fever (ASF) incursion into a country is the sampling of wild or feral pig populations. In Australia, the remote northern regions are considered a risk pathway for ASF incursion due to the combination of high numbers of feral pigs and their close proximity to countries where ASF is present. These regions primarily consist of isolated arid rangelands with high average environmental temperatures.

View Article and Find Full Text PDF

Additive Manufacturing of a Frost-Detection Resistive Sensor for Optimizing Demand Defrost in Refrigeration Systems.

Sensors (Basel)

December 2024

Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.

This article presents the development of a resistive frost-detection sensor fabricated using Fused Filament Fabrication (FFF) with a conductive filament. This sensor was designed to enhance demand-defrost control in industrial refrigeration systems. Frost accumulation on evaporator surfaces blocks airflow and creates a thermal insulating barrier that reduces heat exchange efficiency, increasing energy consumption and operational costs.

View Article and Find Full Text PDF

Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.

View Article and Find Full Text PDF

: The development of a five-in-one vaccine microneedle patch (five-in-one MN patch) aims to address challenges in administering vaccines against Diphtheria (DT), Tetanus (TT), Pertussis (wP), Hepatitis B (HBsAg), and type b (Hib). Combining multiple vaccines into a single patch offers a novel solution to improve vaccine accessibility, stability, and delivery efficiency, particularly in resource-limited settings. : The five-in-one MN patch consists of four distinct microneedle arrays: DT and TT vaccines are coated together on one array, while wP, HepB, and Hib vaccines are coated separately on individual arrays.

View Article and Find Full Text PDF

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!