A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Cryogenic Treatment Characteristics of a Deformation-Processed Cu-Ni-Co-Si Alloy. | LitMetric

Deep Cryogenic Treatment Characteristics of a Deformation-Processed Cu-Ni-Co-Si Alloy.

Materials (Basel)

Centre for Advanced Materials Processing and Manufacturing, The University of Queensland, Brisbane, QLD 4072, Australia.

Published: April 2022

This paper investigated the influence of deep cryogenic treatments (DCT) on the tensile strength, elongation to fracture and conductivity of a deformation-processed Cu-Ni-Co-Si alloy. The tensile properties were measured using a mechanical testing machine. The conductivity was evaluated using a low-resistance tester. The microstructure and precipitated phases were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), an energy dispersive spectrometer (EDS) and an X-ray diffractometer (XRD). The tensile strength, elongation to fracture and conductivity of the Cu-1.34Ni-1.02Co-0.61Si alloy before and after cold rolling at 47% reduction increased with increasing DCT time and tended to be stable at about 36 h. The microstructure became more uniform after the DCT. The grain size was refined and was smallest after DCT for 48 h. The DCT promoted the precipitation of the solid solution elements Ni, Co and Si from the Cu matrix to form many fine and evenly distributed 20-70 nm spherical second-phase particles in the grains and grain boundaries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100281PMC
http://dx.doi.org/10.3390/ma15093051DOI Listing

Publication Analysis

Top Keywords

deep cryogenic
8
deformation-processed cu-ni-co-si
8
cu-ni-co-si alloy
8
tensile strength
8
strength elongation
8
elongation fracture
8
fracture conductivity
8
electron microscopy
8
dct
5
cryogenic treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!