Early Detection of Grapevine () Downy Mildew () and Diurnal Variations Using Thermal Imaging.

Sensors (Basel)

Agricultural Research Organization, Agricultural Engineering, P.O. Box 15159, Rishon Le Zion 7528809, Israel.

Published: May 2022

Agricultural industry is facing a serious threat from plant diseases that cause production and economic losses. Early information on disease development can improve disease control using suitable management strategies. This study sought to detect downy mildew () on grapevine () leaves at early stages of development using thermal imaging technology and to determine the best time during the day for image acquisition. In controlled experiments, 1587 thermal images of grapevines grown in a greenhouse were acquired around midday, before inoculation, 1, 2, 4, 5, 6, and 7 days after an inoculation. In addition, images of healthy and infected leaves were acquired at seven different times during the day between 7:00 a.m. and 4:30 p.m. Leaves were segmented using the active contour algorithm. Twelve features were derived from the leaf mask and from meteorological measurements. Stepwise logistic regression revealed five significant features used in five classification models. Performance was evaluated using K-folds cross-validation. The support vector machine model produced the best classification accuracy of 81.6%, F1 score of 77.5% and area under the curve (AUC) of 0.874. Acquiring images in the morning between 10:40 a.m. and 11:30 a.m. resulted in 80.7% accuracy, 80.5% F1 score, and 0.895 AUC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104212PMC
http://dx.doi.org/10.3390/s22093585DOI Listing

Publication Analysis

Top Keywords

downy mildew
8
thermal imaging
8
early detection
4
detection grapevine
4
grapevine downy
4
mildew diurnal
4
diurnal variations
4
variations thermal
4
imaging agricultural
4
agricultural industry
4

Similar Publications

A high-throughput ResNet CNN approach for automated grapevine leaf hair quantification.

Sci Rep

January 2025

Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany.

The hairiness of the leaves is an essential morphological feature within the genus Vitis that can serve as a physical barrier. A high leaf hair density present on the abaxial surface of the grapevine leaves influences their wettability by repelling forces, thus preventing pathogen attack such as downy mildew and anthracnose. Moreover, leaf hairs as a favorable habitat may considerably affect the abundance of biological control agents.

View Article and Find Full Text PDF

Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.

View Article and Find Full Text PDF

Traditional assessments of grapevine susceptibility to grapevine downy mildew (GDM) caused by rely on the visual evaluation of leaf symptoms. In this study, we used a well-established quantitative real-time PCR TaqMan assay (real-time PCR) to quantify the number of infecting 12 grapevine cultivars under controlled conditions. The molecular disease index (MDI), derived from molecular detection methods, reflects the relative abundance of pathogens in plant tissues during the latent infection phase.

View Article and Find Full Text PDF

, commonly known as stock, is a flowering plant species in the Brassicaceae popularly used as a cut flower due to its fragrant, long-lasting blooms. In September 2023, stock 'Iron White' plants displaying symptoms and signs of downy mildew were observed within a high tunnel in a cut flower farm in Franklin Co., OH.

View Article and Find Full Text PDF

Fluorescence In Situ Hybridization Protocol for Visualization of Oomycetes In Vitro and In Planta.

Methods Mol Biol

December 2024

United States Department of Agriculture, Agricultural Research Service, Foreign Disease/Weed Science Research Unit, Frederick, MD, USA.

Fluorescence in situ hybridization enables the visualization of organisms in the environment without having to culture them. Here, we describe a FISH protocol to visualize oomycete structures (mycelia, sporangiophores, sporangia, and oospores) directly as well as from colonized plant material. The protocol utilizes organic compounds with low toxicities and does not require a permeabilization step.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!