A dual-polarized continuous transverse stub (CTS) K-band antenna with reconfigurable four beams and low profile is proposed based on substrate-integrated-waveguide (SIW) design. It consists of a line source generator (LSG) on the bottom surface, a spherical-wave to plane-wave transforming part on the middle layer, and CTS radiators on the top surface. Particularly, the LSG has four SIW-based H-plane horns, and a chip is integrated to switch among the two pairs of horns, so as to transfer the quasi-TEM waves on the bottom surface by a ±10° deflection angle to the middle layer for the CTS radiators on the top surface, resulting in four reconfigurable scanning beams with 10° for two polarizations. The measurements show that it realizes four reconfigurable beams with a 25.8 dBi gain at 24 GHz, verifying the design. The proposed antenna takes into account the advantages of reconfigurable multi-beam, dual polarization, low side lobes, low profile, and high gain, which can be applied to K-band sensing, especially for wind profile radars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104034PMC
http://dx.doi.org/10.3390/s22093563DOI Listing

Publication Analysis

Top Keywords

reconfigurable beams
12
k-band sensing
8
low profile
8
bottom surface
8
middle layer
8
layer cts
8
cts radiators
8
radiators top
8
top surface
8
reconfigurable
5

Similar Publications

Experimental arrangement to study the impact of atmospheric turbulence on user-defined beams.

Rev Sci Instrum

January 2025

Applied and Adaptive Optics Laboratory, Department of Physics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala, India.

In the present work, we propose an experimental setup to investigate the effect of atmospheric turbulence on user-defined beams. The user-defined beams were formed by writing reconfigurable patterns on a spatial light modulator, allowing the impact of atmospheric turbulence to be investigated simultaneously and in real time. The programmable controllability provides several flexibilities to the system, such as the ability to create different beam types simultaneously, control the separation between different beams, compensate for aberrations, and easily switch between different beam types.

View Article and Find Full Text PDF

Solutions for scalable, high-performance optical control are important for the development of scaled atom-based quantum technologies. Modulation of many individual optical beams is central to applying arbitrary gate and control sequences on arrays of atoms or atom-like systems. At telecom wavelengths, miniaturization of optical components via photonic integration has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices.

View Article and Find Full Text PDF

Full-polarization-locked vortex beam generator with time-varying characteristics.

Nanophotonics

February 2024

Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi'an, Shaanxi 710051, China.

Vortex beams carrying orbital angular momentum (OAM) are considered to hold significant prospects in fields such as super-resolution imaging, high-capacity communications, and quantum optics. Therefore, the techniques of vortex beam generation have attracted extensive studies, in which the development of metasurfaces brings new vigor and vitality to it. However, the generation of reconfigurable vortex beams by metasurfaces at the incidence of arbitrary polarized electromagnetic (EM) waves holds challenges.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists and engineers have long sought faster and more efficient ways to solve mathematical equations, moving beyond traditional brute-force computing methods that are becoming less effective over time.
  • New techniques that take advantage of natural systems' energy minimization, like annealers and Ising Machines, are gaining popularity, with a focus on programmable analog solvers that utilize Maxwell's equations and photonic circuits.
  • A novel photonic integrated circuit was developed, demonstrating 90% accuracy compared to commercial solvers, and successfully tested for modeling thermal diffusion on a spacecraft’s heat shield, signaling potential applications in various scientific and engineering areas.
View Article and Find Full Text PDF

Reversible Electron-Beam Patterning of Colloidal Nanoparticles at Fluid Interfaces.

ACS Appl Mater Interfaces

December 2024

Department of Chemistry, University of California, Berkeley, California 94720, United States.

The directed self-assembly of colloidal nanoparticles (NPs) using external fields guides the formation of sophisticated hierarchical materials but becomes less effective with decreasing particle size. As an alternative, electron-beam-driven assembly offers a potential avenue for targeted nanoscale manipulation, yet remains poorly controlled due to the variety and complexity of beam interaction mechanisms. Here, we investigate the beam-particle interaction of silica NPs pinned to the fluid-vacuum interface of ionic liquid droplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!