Neutron double scatter imaging exploits the kinematics of neutron elastic scattering to enable emission imaging of neutron sources. Due to the relatively low coincidence detection efficiency of fast neutrons in organic scintillator arrays, imaging efficiency for double scatter cameras can also be low. One method to realize significant gains in neutron coincidence detection efficiency is to develop neutron double scatter detectors which employ monolithic blocks of organic scintillator, instrumented with photosensor arrays on multiple faces to enable 3D position and multi-interaction time pickoff. Silicon photomultipliers (SiPMs) have several advantageous characteristics for this approach, including high photon detection efficiency (PDE), good single photon time resolution (SPTR), high gain that translates to single photon counting capabilities, and ability to be tiled into large arrays with high packing fraction and photosensitive area fill factor. However, they also have a tradeoff in high uncorrelated and correlated noise rates (dark counts from thermionic emissions and optical photon crosstalk generated during avalanche) which may complicate event positioning algorithms. We have evaluated the noise characteristics and SPTR of Hamamatsu S13360-6075 SiPMs with low noise, fast electronic readout for integration into a monolithic neutron scatter camera prototype. The sensors and electronic readout were implemented in a small-scale prototype detector in order to estimate expected noise performance for a monolithic neutron scatter camera and perform proof-of-concept measurements for scintillation photon counting and three-dimensional event positioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101142PMC
http://dx.doi.org/10.3390/s22093553DOI Listing

Publication Analysis

Top Keywords

double scatter
16
monolithic neutron
12
neutron double
12
detection efficiency
12
neutron
8
coincidence detection
8
organic scintillator
8
single photon
8
photon counting
8
event positioning
8

Similar Publications

The detection and analysis of cancer cell exosomes with high sensitivity and precision are pivotal for the early diagnosis and treatment strategies of prostate cancer. To this end, a microfluidic chip, equipped with a cactus-like array substrate (CAS) based on surface-enhanced Raman spectroscopy (SERS) was designed and fabricated for the detection of exosome concentrations in Lymph Node Carcinoma of the Prostate (LNCaP). Double layers of polystyrene (PS) microspheres were self-assembled onto a polyethylene terephthalate (PET) film to form an ordered cactus-like nanoarray for detection and analysis.

View Article and Find Full Text PDF

The intrinsic temperature dependence of Raman-active modes in carbon nanotubes (CNTs), particularly the radial breathing mode (RBM), has been a topic of a long-standing controversy. In this study, we prepared suspended individual CNTs to investigate how their Raman spectra depend on temperature and to understand the effects of environmental conditions on this dependency. We analyzed the intrinsic temperature dependence of the main Raman-active modes, including the RBM, the moiré-activated R feature, and the G-band in double-walled carbon nanotubes (DWCNT) and single-walled carbon nanotubes (SWCNTs) after complete desorption of air.

View Article and Find Full Text PDF

Controlling the Hierarchical Assembly of DNA-Based Hexagonal Microstructures.

Small

December 2024

Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.

This paper discusses the controlled morphology of hierarchical liquid crystalline DNA assemblies. Through a process of heating and slow cooling, double-stranded DNAs (dsDNAs) having 23 complementary bases and two base overhangs (a pair of 25mer oligonucleotides) spontaneously assemble into micro-sized hexagonal platelets in a solution containing poly(ethylene glycol) (PEG) and salt. Remarkably, the addition of a shorter dsDNA with AA/TT overhangs (a pair of 18mer oligonucleotides) to a PEG-salt solution of 25mer DNA with AA/TT overhangs results in the formation of molecular tubes, each with a central blockage.

View Article and Find Full Text PDF

Differential insertion of arginine in saturated and unsaturated lipid vesicles.

Biochim Biophys Acta Biomembr

December 2024

Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofísica Aplicada y Alimentos, CIBAAL, National University of Santiago del Estero and CONICET), RN 9 - Km 1125, 4206 Santiago del Estero, Argentina. Electronic address:

Article Synopsis
  • This study investigates how L-Arginine (L-Arg) affects lipid membranes using various techniques like fluorescence spectroscopy and dynamic light scattering.
  • L-Arg reduces the polarizability of saturated lipids, leading to an increase in vesicle size, while in unsaturated lipids, it increases polarizability without significantly changing size.
  • The interaction of L-Arg differs based on whether the lipids are saturated or unsaturated, and cholesterol appears to dampen these effects.
View Article and Find Full Text PDF

Programmable Self-Assembly from Two-Dimensional Nanosheets to Spiral, Twisted and Branched Nanostructures.

Angew Chem Int Ed Engl

December 2024

Hefei National Research Center for Physical Science at the Microscale, Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, China.

Self-assembly of nanomaterials into hierarchical structure is of great interest to fabricate functional materials. However, programmable design of the assembled structures remains a great challenge. Herein, we reported a programmable self-assembly strategy to customize the assembled structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!