As the major nutrient affecting crop growth, accurate assessing of nitrogen (N) is crucial to precise agricultural management. Although improvements based on ground and satellite data nitrogen in monitoring crops have been made, the application of these technologies is limited by expensive costs, covering small spatial scales and low spatiotemporal resolution. This study strived to explore an effective approach for inversing and mapping the distributions of the canopy nitrogen concentration (CNC) based on Unmanned Aerial Vehicle (UAV) hyperspectral image data in a typical apple orchard area of China. A Cubert UHD185 imaging spectrometer mounted on a UAV was used to obtain the hyperspectral images of the apple canopy. The range of the apple canopy was determined by the threshold method to eliminate the effect of the background spectrum from bare soil and shadow. We analyzed and screened out the spectral parameters sensitive to CNC, including vegetation indices (VIs), random two-band spectral indices, and red-edge parameters. The partial least squares regression (PLSR) and backpropagation neural network (BPNN) were constructed to inverse CNC based on a single spectral parameter or a combination of multiple spectral parameters. The results show that when the thresholds of normalized difference vegetation index (NDVI) and normalized difference canopy shadow index (NDCSI) were set to 0.65 and 0.45, respectively, the canopy's CNC range could be effectively identified and extracted, which was more refined than random forest classifier (RFC); the correlation between random two-band spectral indices and nitrogen concentration was stronger than that of other spectral parameters; and the BPNN model based on the combination of random two-band spectral indices and red-edge parameters was the optimal model for accurately retrieving CNC. Its modeling determination coefficient (R) and root mean square error (RMSE) were 0.77 and 0.16, respectively; and the validation R and residual predictive deviation (RPD) were 0.75 and 1.92. The findings of this study can provide a theoretical basis and technical support for the large-scale, rapid, and non-destructive monitoring of apple nutritional status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100912 | PMC |
http://dx.doi.org/10.3390/s22093503 | DOI Listing |
Cytotechnology
April 2025
Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Because acute kidney injuries (AKI) are one of the critical health problems worldwide, studies on the risk factors, mechanisms, and treatment strategies seem necessary. Glycerol (GLY), known to induce cell necrosis via myoglobin accumulation in renal tubules, is widely used as an AKI model. This study aimed to evaluate the protective effects of gallic acid (GA) against GLY-induced AKI.
View Article and Find Full Text PDFNanoscale
January 2025
College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Interfacial solar vapor generation (ISVG) accompanied by photocatalytic degradation holds immense potential to mitigate water scarcity and pollution. Distinct from the two detached functional components (photothermal agent and photocatalyst) in a conventional evaporator, in this study, an all-in-one photothermal/catalytic agent, nitrogen-containing honeycomb carbon nanosheets (NHC), was engineered for synergistic high-efficiency steam generation and photocatalysis functions. It was demonstrated that the superoxide radical generated on the surface of NHC conferred its catalytic activity to the photodegradation of organic pollutants under full solar spectrum irradiation.
View Article and Find Full Text PDFEcology
January 2025
School of Life Sciences, Hebei University, Baoding, China.
Nitrogen (N) retention is a critical ecosystem function associated with sustainable N supply. Lack of experimental evidence limits our understanding of how grassland N retention can vary with soil acidification. A N-labeling experiment was conducted for 2 years to quantify N retention by soil pathways and plant functional groups across a soil-acidification gradient in a meadow.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
Nitric oxide (NO) is an essential molecule in biomedicine, recognized for its antibacterial properties, neuronal modulation, and use in inhalation therapies. The effectiveness of NO-based treatments relies on precise control of NO concentrations tailored to specific therapeutic needs. Electrochemical generation of NO (E-NOgen) via nitrite (NO ) reduction offers a scalable and efficient route for controlled NO production, while also addressing environmental concerns by reducing NO pollution and maintaining nitrogen cycle balance.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fudan University, Department of Macromolecular Science, 2205 Songhu Rd, 200438, Shanghai, CHINA.
Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!