A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CIM-Based Smart Pose Detection Sensors. | LitMetric

CIM-Based Smart Pose Detection Sensors.

Sensors (Basel)

Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan.

Published: May 2022

The majority of digital sensors rely on von Neumann architecture microprocessors to process sampled data. When the sampled data require complex computation for 24×7, the processing element will a consume significant amount of energy and computation resources. Several new sensing algorithms use deep neural network algorithms and consume even more computation resources. High resource consumption prevents such systems for 24×7 deployment although they can deliver impressive results. This work adopts a Computing-In-Memory (CIM) device, which integrates a storage and analog processing unit to eliminate data movement, to process sampled data. This work designs and evaluates the CIM-based sensing framework for human pose recognition. The framework consists of uncertainty-aware training, activation function design, and CIM error model collection. The evaluation results show that the framework can improve the detection accuracy of three poses classification on CIM devices using binary weights from 33.3% to 91.5% while that on ideal CIM is 92.1%. Although on digital systems the accuracy is 98.7% with binary weight and 99.5% with floating weight, the energy consumption of executing 1 convolution layer on a CIM device is only 30,000 to 50,000 times less than the digital sensing system. Such a design can significantly reduce power consumption and enables battery-powered always-on sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102820PMC
http://dx.doi.org/10.3390/s22093491DOI Listing

Publication Analysis

Top Keywords

sampled data
12
process sampled
8
computation resources
8
cim device
8
cim
5
cim-based smart
4
smart pose
4
pose detection
4
detection sensors
4
sensors majority
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!