Image dehazing is challenging due to the problem of ill-posed parameter estimation. Numerous prior-based and learning-based methods have achieved great success. However, most learning-based methods use the changes and connections between scale and depth in convolutional neural networks for feature extraction. Although the performance is greatly improved compared with the prior-based methods, the performance in extracting detailed information is inferior. In this paper, we proposed an image dehazing model built with a convolutional neural network and Transformer, called Transformer for image dehazing (TID). First, we propose a Transformer-based channel attention module (TCAM), using a spatial attention module as its supplement. These two modules form an attention module that enhances channel and spatial features. Second, we use a multiscale parallel residual network as the backbone, which can extract feature information of different scales to achieve feature fusion. We experimented on the RESIDE dataset, and then conducted extensive comparisons and ablation studies with state-of-the-art methods. Experimental results show that our proposed method effectively improves the quality of the restored image, and it is also better than the existing attention modules in performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105677 | PMC |
http://dx.doi.org/10.3390/s22093428 | DOI Listing |
Sensors (Basel)
January 2025
School of Computer Science, Northeast Electric Power University, Jilin 132012, China.
Satellites frequently encounter atmospheric haze during imaging, leading to the loss of detailed information in remote sensing images and significantly compromising image quality. This detailed information is crucial for applications such as Earth observation and environmental monitoring. In response to the above issues, this paper proposes an end-to-end multi-scale adaptive feature extraction method for remote sensing image dehazing (MSD-Net).
View Article and Find Full Text PDFSci Rep
December 2024
College of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China.
The scattering of tiny particles in the atmosphere causes a haze effect on remote sensing images captured by satellites and similar devices, significantly disrupting subsequent image recognition and classification. A generative adversarial network named TRPC-GAN with texture recovery and physical constraints is proposed to mitigate this impact. This network not only effectively removes haze but also better preserves the texture information of the original remote sensing image, thereby enhancing the visual quality of the dehazed image.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Haze can significantly reduce visibility and contrast of images captured outdoors, necessitating the enhancement of images. This degradation in image quality can adversely affect various applications, including autonomous driving, object detection, and surveillance, where poor visibility may lead to navigation errors and obscure crucial details. Existing dehazing techniques face several challenges: spatial methods tend to be computationally heavy, transform methods often fall short in quality, hybrid methods can be intricate and demanding, and deep learning methods require extensive datasets and computational power.
View Article and Find Full Text PDFJ Environ Sci (China)
June 2025
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
Environmental monitoring systems based on remote sensing technology have a wider monitoring range and longer timeliness, which makes them widely used in the detection and management of pollution sources. However, haze weather conditions degrade image quality and reduce the precision of environmental monitoring systems. To address this problem, this research proposes a remote sensing image dehazing method based on the atmospheric scattering model and a dark channel prior constrained network.
View Article and Find Full Text PDFSci Rep
November 2024
School of Mechanical Engineering, Mettu University, Mettu, Ethiopia.
With the advances in technology, humans tend to explore the world underwater in a more constructive way than before. The appearance of an underwater object varies depending on depth, biological composition, temperature, ocean currents, and other factors. This results in colour distorted images and hazy images with low contrast.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!