Planetary boundary-layer height is an important physical quantity for weather forecasting models and atmosphere environment assessment. A method of simultaneously extracting the surface-layer height (SLH), mixed-layer height (MLH), and aerosol optical properties, which include aerosol extinction coefficient (AEC) and aerosol optical depth (AOD), based on the signal-to-noise ratio (SNR) of the same coherent Doppler wind lidar (CDWL) is proposed. The method employs wavelet covariance transform to locate the SLH and MLH using the local maximum positions and an automatic algorithm of dilation operation. AEC and AOD are determined by the fitting curve using the SNR equation. Furthermore, the method demonstrates the influential mechanism of optical properties on the SLH and MLH. MLH is linearly correlated with AEC and AOD because of solar heating increasing. The results were verified by the data of an ocean island site in China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099784PMC
http://dx.doi.org/10.3390/s22093412DOI Listing

Publication Analysis

Top Keywords

aerosol optical
12
optical properties
12
planetary boundary-layer
8
boundary-layer height
8
coherent doppler
8
doppler wind
8
wind lidar
8
slh mlh
8
aec aod
8
simultaneous extraction
4

Similar Publications

Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets.

View Article and Find Full Text PDF

Utilizing aerosol jet printing (AJP), this study achieves a breakthrough in fabricating luminescent fibers with superior optical performance and flexibility. The YO:Eu coated high silica glass fibers demonstrate luminous efficiency twice that of traditional methods, retaining 80% after 250 bending cycles and 90% after sweat immersion. This AJP technique not only elevates the potential of smart fabrics but also represents a significant innovation in lighting technology, providing new ideas for advanced functional fiber fabrication.

View Article and Find Full Text PDF

XIS-PM: A daily spatiotemporal machine-learning model for PM in the contiguous United States.

Environ Res

January 2025

Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel.

Air-pollution monitoring is sparse across most of the United States, so geostatistical models are important for reconstructing concentrations of fine particulate air pollution (PM) for use in health studies. We present XGBoost-IDW Synthesis (XIS), a daily high-resolution PM machine-learning model covering the contiguous US from 2003 through 2023. XIS uses aerosol optical depth from satellites and a parsimonious set of additional predictors to make predictions at arbitrary points, capturing near-roadway gradients and allowing the estimation of address-level exposures.

View Article and Find Full Text PDF

The most widely used radiance sensor for monitoring Night Sky Brightness (NSB) is the Sky Quality Meter (SQM), making its measurement stability fundamental. A method using the Sun as a calibrator was applied to analyse the quality of the measures recorded in the Veneto Region (Italy) and at La Silla (Chile). The analysis mainly revealed a tendency toward reductions in measured NSB due to both instrument ageing and atmospheric variations.

View Article and Find Full Text PDF

A Study on Dust Storm Pollution and Source Identification in Northwestern China.

Toxics

January 2025

Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

In April 2023, a major dust storm event in Lanzhou attracted widespread attention. This study provides a comprehensive analysis of the causes, progression, and dust sources of this event using multiple data sources and methods. Backward trajectory analysis using the HYSPLIT model was employed to trace the origins of the dust, while FY-2H satellite data provided high-resolution dust distribution patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!