The Assisted Living Environments Research Area-AAL (Ambient Assisted Living), focuses on generating innovative technology, products, and services to assist, medical care and rehabilitation to older adults, to increase the time in which these people can live. independently, whether they suffer from neurodegenerative diseases or some disability. This important area is responsible for the development of activity recognition systems-ARS (Activity Recognition Systems), which is a valuable tool when it comes to identifying the type of activity carried out by older adults, to provide them with assistance. that allows you to carry out your daily activities with complete normality. This article aims to show the review of the literature and the evolution of the different techniques for processing this type of data from supervised, unsupervised, ensembled learning, deep learning, reinforcement learning, transfer learning, and metaheuristics approach applied to this sector of science. health, showing the metrics of recent experiments for researchers in this area of knowledge. As a result of this article, it can be identified that models based on reinforcement or transfer learning constitute a good line of work for the processing and analysis of human recognition activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103712 | PMC |
http://dx.doi.org/10.3390/s22093401 | DOI Listing |
Sensors (Basel)
December 2024
Automation Department, North China Electric Power University, Baoding 071003, China.
Aiming at the severe occlusion problem and the tiny-scale object problem in the multi-fitting detection task, the Scene Knowledge Integrating Network (SKIN), including the scene filter module (SFM) and scene structure information module (SSIM) is proposed. Firstly, the particularity of the scene in the multi-fitting detection task is analyzed. Hence, the aggregation of the fittings is defined as the scene according to the professional knowledge of the power field and the habit of the operators in identifying the fittings.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Nokia Bell Labs, 1082 Budapest, Hungary.
Human action recognition using WiFi channel state information (CSI) has gained attention due to its non-intrusive nature and potential applications in healthcare, smart environments, and security. However, the reliability of methods developed for CSI-based action recognition is often contingent on the quality of the datasets and evaluation protocols used. In this paper, we uncovered a critical data leakage issue, which arises from improper data partitioning, in a widely used WiFi CSI benchmark dataset.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Industrial Engineering, Chosun University, Gwangju 61452, Republic of Korea.
In human activity recognition, accurate and timely fall detection is essential in healthcare, particularly for monitoring the elderly, where quick responses can prevent severe consequences. This study presents a new fall detection model built on a transformer architecture, which focuses on the movement speeds of key body points tracked using the MediaPipe library. By continuously monitoring these key points in video data, the model calculates real-time speed changes that signal potential falls.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical, Computer, and Software Engineering, The University of Auckland, Auckland 1010, New Zealand.
Sensor-based Human Activity Recognition (HAR) is crucial in ubiquitous computing, analyzing behaviors through multi-dimensional observations. Despite research progress, HAR confronts challenges, particularly in data distribution assumptions. Most studies assume uniform data distributions across datasets, contrasting with the varied nature of practical sensor data in human activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!