The IETF Routing Over Low power and Lossy network (ROLL) working group defined IPv6 Routing Protocol for Low Power and Lossy Network (RPL) to facilitate efficient routing in IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN). Limited resources of 6LoWPAN nodes make it challenging to secure the environment, leaving it vulnerable to threats and security attacks. Machine Learning (ML) and Deep Learning (DL) approaches have shown promise as effective and efficient mechanisms for detecting anomalous behaviors in RPL-based 6LoWPAN. Therefore, this paper systematically reviews and critically analyzes the research landscape on ML, DL, and combined ML-DL approaches applied to detect attacks in RPL networks. In addition, this study examined existing datasets designed explicitly for the RPL network. This work collects relevant studies from five major databases: Google Scholar, Springer Link, Scopus, Science Direct, and IEEE Xplore digital library. Furthermore, 15,543 studies, retrieved from January 2016 to mid-2021, were refined according to the assigned inclusion criteria and designed research questions resulting in 49 studies. Finally, a conclusive discussion highlights the issues and challenges in the existing studies and proposes several future research directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101018 | PMC |
http://dx.doi.org/10.3390/s22093400 | DOI Listing |
Brief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFInt J Surg
January 2025
Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.
View Article and Find Full Text PDFHum Reprod Open
November 2024
Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?
Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.
What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.
EClinicalMedicine
December 2024
Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).
View Article and Find Full Text PDFAnim Front
December 2024
Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!