Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Among various energy harvesting technologies, triboelectricity is an epoch-making discovery that can convert energy loss caused by the mechanical vibration or friction of parts into energy gain. As human convenience has emerged as an important future value, wireless devices have attracted widespread attention; thus, it is essential to extend the duration and lifespan of batteries through energy harvesting or the application of self-powered equipment. Here, we report a transistor, in which the gate rotates and rubs against the dielectric and utilizes the triboelectricity generated rather than the switching voltage of the transistor. The device is a triboelectric transistor with a simple structure and is manufactured using a simple process. Compared to that at the stationary state, the output current of the triboelectric transistor increased by 207.66 times at the maximum rotation velocity. The approach reported in this paper could be an innovative method to enable a transistor to harness its own power while converting energy loss in any rotating object into harvested energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104957 | PMC |
http://dx.doi.org/10.3390/s22093309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!