A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FOODCAM: A Novel Structured Light-Stereo Imaging System for Food Portion Size Estimation. | LitMetric

FOODCAM: A Novel Structured Light-Stereo Imaging System for Food Portion Size Estimation.

Sensors (Basel)

Department of Electrical & Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.

Published: April 2022

Imaging-based methods of food portion size estimation (FPSE) promise higher accuracies compared to traditional methods. Many FPSE methods require dimensional cues (fiducial markers, finger-references, object-references) in the scene of interest and/or manual human input (wireframes, virtual models). This paper proposes a novel passive, standalone, multispectral, motion-activated, structured light-supplemented, stereo camera for food intake monitoring (FOODCAM) and an associated methodology for FPSE that does not need a dimensional reference given a fixed setup. The proposed device integrated a switchable band (visible/infrared) stereo camera with a structured light emitter. The volume estimation methodology focused on the 3-D reconstruction of food items based on the stereo image pairs captured by the device. The FOODCAM device and the methodology were validated using five food models with complex shapes (banana, brownie, chickpeas, French fries, and popcorn). Results showed that the FOODCAM was able to estimate food portion sizes with an average accuracy of 94.4%, which suggests that the FOODCAM can potentially be used as an instrument in diet and eating behavior studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102485PMC
http://dx.doi.org/10.3390/s22093300DOI Listing

Publication Analysis

Top Keywords

food portion
12
portion size
8
size estimation
8
stereo camera
8
food
6
foodcam
5
foodcam novel
4
novel structured
4
structured light-stereo
4
light-stereo imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!