A Data-Driven Approach to Quantify and Measure Students' Engagement in Synchronous Virtual Learning Environments.

Sensors (Basel)

Research Group in Internet Technologies & Storage, La Salle Campus Barcelona, Universitat Ramon Llull, Quatre Camins 30, 08022 Barcelona, Spain.

Published: April 2022

AI Article Synopsis

  • Instructors gauge student engagement in face-to-face learning through real-time monitoring, adapting activities to maintain interest.
  • Transitioning to synchronous virtual learning environments (VLEs) complicates the assessment of student engagement, as traditional indicators like facial expressions and voice can be limited by technology.
  • This paper outlines a methodology for measuring engagement in VLEs based on analyzing over 30 digital interactions, supported by a software prototype tested during different types of synchronous lessons, ultimately helping instructors reconnect with students in a virtual setting.

Article Abstract

In face-to-face learning environments, instructors (sub)consciously measure student engagement to obtain immediate feedback regarding the training they are leading. This constant monitoring process enables instructors to dynamically adapt the training activities according to the perceived student reactions, which aims to keep them engaged in the learning process. However, when shifting from face-to-face to synchronous virtual learning environments (VLEs), assessing to what extent students are engaged to the training process during the lecture has become a challenging and arduous task. Typical indicators such as students' faces, gestural poses, or even hearing their voice can be easily masked by the intrinsic nature of the virtual domain (e.g., cameras and microphones can be turned off). The purpose of this paper is to propose a methodology and its associated model to measure student engagement in VLEs that can be obtained from the systematic analysis of more than 30 types of digital interactions and events during a synchronous lesson. To validate the feasibility of this approach, a software prototype has been implemented to measure student engagement in two different learning activities in a synchronous learning session: a masterclass and a hands-on session. The obtained results aim to help those instructors who feel that the connection with their students has weakened due to the virtuality of the learning environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103305PMC
http://dx.doi.org/10.3390/s22093294DOI Listing

Publication Analysis

Top Keywords

learning environments
12
measure student
12
student engagement
12
synchronous virtual
8
virtual learning
8
learning
7
data-driven approach
4
approach quantify
4
measure
4
quantify measure
4

Similar Publications

Background: Comprehensive clinical data regarding factors influencing the individual disease course of patients with movement disorders treated with deep brain stimulation might help to better understand disease progression and to develop individualized treatment approaches.

Methods: The clinical core data set was developed by a multidisciplinary working group within the German transregional collaborative research network ReTune. The development followed standardized methodology comprising review of available evidence, a consensus process and performance of the first phase of the study.

View Article and Find Full Text PDF

A comparison of force adaptation in toddlers and adults during a drawer opening task.

Sci Rep

January 2025

Department of Psychology, Faculty of Psychology and Sport Science, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Gießen, Germany.

Adapting movements to rapidly changing conditions is fundamental for interacting with our dynamic environment. This adaptability relies on internal models that predict and evaluate sensory outcomes to adjust motor commands. Even infants anticipate object properties for efficient grasping, suggesting the use of internal models.

View Article and Find Full Text PDF

Air pollution in cities, especially NO, is linked to numerous health problems, ranging from mortality to mental health challenges and attention deficits in children. While cities globally have initiated policies to curtail emissions, real-time monitoring remains challenging due to limited environmental sensors and their inconsistent distribution. This gap hinders the creation of adaptive urban policies that respond to the sequence of events and daily activities affecting pollution in cities.

View Article and Find Full Text PDF

Collective behavior in biological systems emerges from local interactions among individuals, enabling groups to adapt to dynamic environments. Traditional modeling approaches, such as bottom-up and top-down models, have limitations in accurately representing these complex interactions. We propose a novel potential field mechanism that integrates local interactions and environmental influences to explain collective behavior.

View Article and Find Full Text PDF

The transportation industry contributes significantly to climate change through carbon dioxide ( ) emissions, intensifying global warming and leading to more frequent and severe weather phenomena such as flooding, drought, heat waves, glacier melting, and rising sea levels. This study proposes a comprehensive approach for predicting emissions from vehicles using deep learning techniques enhanced by eXplainable Artificial Intelligence (XAI) methods. Utilizing a dataset from the Canadian government's official open data portal, we explored the impact of various vehicle attributes on emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!