Compared to other types of sensors, fiber optic sensors have improved accuracy and durability. Recently, the Smart Strand was developed to maximize the advantages of fiber optic sensors for measuring the cable forces in prestressed concrete structures or cable-supported bridges. The Smart Strand has fiber Bragg gratings (FBGs) embedded in a core wire of the seven-wire strand. Similar to other sensors, the strain measured at an FBG is affected by temperature; therefore, the temperature effect that is not related to the mechanical strain should be compensated for or corrected in the long-term measurement subjected to temperature variation. However, a temperature compensation procedure for the FBG has yet to be established, and relevant studies have used different formulas for the compensation. Moreover, when the FBG sensors are packaged with a certain material-such as fiber reinforced polymer-for protection, it is important to consider the interaction between the FBG, packaging material, and host material during thermal behavior. Therefore, this study proposed a reasonable procedure for temperature compensation for the FBG sensors embedded in packaging material and host material. In particular, the thermal sensitivity of the Smart Strand was intensively investigated. The proposed theoretical formulas were validated through comparison with data obtained from various specimens in a temperature-controlled chamber. Finally, the procedure was applied to correct the data measured using the Smart Strands in a 20-m-long full-scale specimen for about a year, thus resulting in a realistic trend of the long-term prestressing force.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106026 | PMC |
http://dx.doi.org/10.3390/s22093282 | DOI Listing |
STAR Protoc
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Strand-optimized Smart-seq (So-Smart-seq) can capture a comprehensive transcriptome from low-input samples. This technique detects both polyadenylated and non-polyadenylated RNAs, inclusive of repetitive RNAs, while excluding highly abundant ribosomal RNAs. So-Smart-seq preserves strand information and minimizes 5' to 3' coverage bias.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
Accurate and sensitive detection of Pax-5a gene is the basis of early diagnosis and prediction of acute leukemia. This research aims to develop a universal dual-mode sensing method enables ultrasensitive gene detection based on smart control of DNA amplification by nucleic acid beacons e to form programmed dendrimer. The Pax-5a target gene triggers the opening of smart gate hairpin probe (Hp), exposing the stem sequence as the primer to bind with padlock probe for rolling circle amplification (RCA).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
Accurate and sensitive fluorescence imaging of biothiols is essential for understanding the mechanism underlying some physiological and pathological events, as well as the prevention and diagnosis of diseases. However, low signal transduction efficiency and poor biocompatibility of fluorescence tags associated with current sensors hinder their potential utilizations. Herein, a smart biothiols sensitive vivo imaging platform on the basis of amplifying nanoprobe has been designed.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
International Research Center for Food and Health, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Accurate methods for assessing food freshness through colorimetric pH response play a critical role in determining food spoilage and ensuring food quality standards. This study introduces a novel unlabeled DNA sequence, poly-dA, designed to exploit the colorimetric properties of both the single strand and the fold-back A-motif structure in conjunction with gold nanoparticles (AuNPs) under varying pH conditions. When exposed to storage temperatures of 4 °C and 25 °C, the color variations in the AuNP solution, influenced by pH level changes in mutton and sea bass samples' different storage periods, are easily discernible to the naked eye within a minute.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Institute for Advanced Study, Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China. Electronic address:
Herein, a novel dual-function paper-based biosensor using diffusion wet area as readout has been developed for simple and sensitive detection of hyaluronidase (HAase) and human papillomavirus (HPV) 16 DNA, respectively. The target-regulated-water absorption hydrogel synthesized by hyaluronic acid (HA) and single-stranded DNA (ssDNA) is chosen as an ideal material for diffusion wet area generation on paper. The hydrogel can be degraded through the enzymolysis of HA by HAase or the trans-cleavage of ssDNA by HPV DNA-activated CRISPR/cas12a system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!