A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robust Spatial-Spectral Squeeze-Excitation AdaBound Dense Network (SE-AB-Densenet) for Hyperspectral Image Classification. | LitMetric

Increasing importance in the field of artificial intelligence has led to huge progress in remote sensing. Deep learning approaches have made tremendous progress in hyperspectral image (HSI) classification. However, the complexity in classifying the HSI data using a common convolutional neural network is still a challenge. Further, the network architecture becomes more complex when different spatial-spectral feature information is extracted. Usually, CNN has a large number of trainable parameters, which increases the computational complexity of HSI data. In this paper, an optimized squeeze-excitation AdaBound dense network (SE-AB-DenseNet) is designed to emphasize the significant spatial-spectral features of HSI data. The dense network is combined with the AdaBound and squeeze-excitation modules to give lower computation costs and better classification performance. The AdaBound optimizer gives the proposed model the ability to improve its stability and enhance its classification accuracy by approximately 2%. Additionally, the cutout regularization technique is used for HSI spatial-spectral classification to overcome the problem of overfitting. The experiments were carried out on two commonly used hyperspectral datasets (Indian Pines and Salinas). The experiment results on the datasets show a competitive classification accuracy when compared with state-of-the-art methods with limited training samples. From the SE-AB-DenseNet with the cutout model, the overall accuracies for the Indian Pines and Salinas datasets were observed to be 99.37 and 99.78, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105163PMC
http://dx.doi.org/10.3390/s22093229DOI Listing

Publication Analysis

Top Keywords

dense network
12
hsi data
12
squeeze-excitation adabound
8
adabound dense
8
network se-ab-densenet
8
hyperspectral image
8
classification accuracy
8
indian pines
8
pines salinas
8
classification
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!