Chest radiography is one of the most widely used diagnostic methods in hospitals, but it is difficult to read clearly because several human organ tissues and bones overlap. Therefore, various image processing and rib segmentation methods have been proposed to focus on the desired target. However, it is challenging to segment ribs elaborately using deep learning because they cannot reflect the characteristics of each region. Identifying which region has specific characteristics vulnerable to deep learning is an essential indicator of developing segmentation methods in medical imaging. Therefore, it is necessary to compare the deep learning performance differences based on regional characteristics. This study compares the differences in deep learning performance based on the rib region to verify whether deep learning reflects the characteristics of each part and to demonstrate why this regional performance difference has occurred. We utilized 195 normal chest X-ray datasets with data augmentation for learning and 5-fold cross-validation. To compare segmentation performance, the rib image was divided vertically and horizontally based on the spine, clavicle, heart, and lower organs, which are characteristic indicators of the baseline chest X-ray. Resultingly, we found that the deep learning model showed a 6-7% difference in the segmentation performance depending on the regional characteristics of the rib. We verified that the performance differences in each region cannot be ignored. This study will enable a more precise segmentation of the ribs and the development of practical deep learning algorithms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104434 | PMC |
http://dx.doi.org/10.3390/s22093143 | DOI Listing |
This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.
View Article and Find Full Text PDFPLoS One
January 2025
Academy of Fine Arts, Jiangsu Second Normal University, Nanjing, China.
Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Psychiatry Research and Center for Cognitive and Computational Neuropsychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
Soccer is arguably the most widely followed sport worldwide, and many dream of becoming soccer players. However, only a few manage to achieve this dream, which has cast a significant spotlight on elite soccer players who possess exceptional skills to rise above the rest. Originally, such attention was focused on their great physical abilities.
View Article and Find Full Text PDFJ Thorac Imaging
September 2024
School of Computer Science and Engineering, The Hebrew University of Jerusalem.
Purpose: Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for the automatic analysis of metastatic lung lesions and their temporal changes in pairs of chest CT scans.
Materials And Methods: SimU-Net is a simultaneous multichannel 3D U-Net model trained on pairs of registered prior and current scans of a patient.
J Neuroophthalmol
December 2024
Division of Ophthalmology (EB-S, AS, AA-A, AS-B, DW, SS, FC), Department of Surgery, University of Calgary, Calgary, Canada; Department of Biomedical Engineering (CN), University of Calgary, Calgary, Canada; Departments of Neurology (LBDL) and Ophthalmology (LBDL), University of Michigan, Ann Arbor, Michigan; and Department of Clinical Neurosciences (SS, FC), University of Calgary, Calgary, Canada.
Background: Optic neuritis (ON) is a complex clinical syndrome that has diverse etiologies and treatments based on its subtypes. Notably, ON associated with multiple sclerosis (MS ON) has a good prognosis for recovery irrespective of treatment, whereas ON associated with other conditions including neuromyelitis optica spectrum disorders or myelin oligodendrocyte glycoprotein antibody-associated disease is often associated with less favorable outcomes. Delay in treatment of these non-MS ON subtypes can lead to irreversible vision loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!