Multiblock copolymers, composed of different combinations and number of blocks, offer appreciable opportunities for new advanced materials. However, exploring this parameter space using traditional block copolymer synthetic techniques, such as living polymerization of sequential blocks, is time-consuming and requires stringent conditions. Using thiol addition across norbornene chemistry, we demonstrate a simple synthetic approach to multiblock copolymers that produces either random or alternating architectures, depending on the choice of reactants. Past reports have highlighted the challenges associated with using thiol-ene chemistry for polymer-polymer conjugation; however, using norbornene as the "ene" yielded multiblock copolymers at least four or five blocks. Preparation of new multiblock copolymers containing two or three block chemistries highlights the versatility of this new approach. These materials were thermally stable and showed microphase separation according to characterization by DSC, SAXS, and AFM. This chemical platform offers a facile and efficient route to exploring the many possibilities of multiblock copolymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mz5001288 | DOI Listing |
J Am Chem Soc
December 2024
Polymer Synthesis Laboratory, Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
Uniform sugar-functionalized polyesters combine the benefits of sugar's structural diversity, biocompatibility, and biodegradability with precise postfunctionalization capabilities, making them a highly valuable class of materials with extensive application potential. However, the irregular placement of hydroxyl groups has limited the synthesis of these polyesters. Here, we present the first platform for uniform sugar-functionalized polyesters via regioselective ring-opening copolymerizations (ROCOPs) of allopyranoside anhydrosugar epoxide (, derived from d-glucose) with cyclic anhydrides, followed by complete selective deprotection.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands.
Melt electrowriting (MEW) is a powerful additive manufacturing technique to produce tissue engineering scaffolds. Despite its strength, it is limited by a small number of processable polymers. Therefore, to broaden the library of materials for MEW, we investigated the printability of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT-PBT), a thermoplastic elastomer.
View Article and Find Full Text PDFMacromol Biosci
November 2024
Department of Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany.
A strategy for multifunctional biosurfaces exploiting multiblock copolymers and the antipolyelectrolyte effect is reported. Combining a polyzwitterionic/antifouling and a polycationic/antibacterial block with a central anchoring block for attachment to titanium oxide surfaces affords surface coatings that exhibit antifouling properties against proteins and allow for surface regeneration by clearing adhering proteins by employing a salt washing step. The surfaces also kill bacteria by contact killing, which is aided by a nonfouling block.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
The synthetic toolbox for stimuli-responsive polymers has broadened to include many tunable variables, making these materials applicable in diverse technologies. However, unraveling the key composition-structure-function relationships to facilitate ground-up design remains a challenge due to the inherent dispersity in sequence and conformations for synthetic polymers. We here present a systematic study of these relationships using a model system of copolymers with a thermoresponsive (-isopropylacrylamide) backbone in addition to metal-chelating (acrylic acid) and hydrophobic structural comonomers and evaluate their efficiency at isolating technologically critical lanthanide ions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!