The influence of backbone composition on the physical properties of donor-acceptor (D-A) copolymers composed of varying amounts of benzodithiophene (BDT) donor with the thienoisoindoledione (TID) acceptor is investigated. First, the synthesis of bis- and tris-BDT monomers is reported; these monomers are subsequently used in Stille copolymerizations to create well-defined alternating polymer structures with repeating (D-A), (D-D-A), and (D-D-D-A) units. For comparison, five semi-random D-A copolymers with a D:A ratio of 1.5, 2, 3, 4, and 7 were synthesized by reacting trimethyltin-functionalized BDT with various ratios of iodinated BDT and brominated TID. While the HOMO levels of all the resultant polymers are very similar, a systematic red shift in the absorbance spectra onset of the D-A copolymer films from 687 to 883 nm is observed with increasing acceptor content, suggesting the LUMO can be fine-tuned over a range of 0.4 eV. When the solid-state absorbance spectra of well-defined alternating copolymers are compared to those of semi-random copolymers with analogous D:A ratios, the spectra of the alternating copolymers are significantly more red-shifted. Organic photovoltaic device efficiencies show that the semi-random materials all outperform the well-defined alternating copolymers, and an optimal D:A ratio of 2 produces the highest efficiency. Additional considerations concerning fine-tuning the lifetimes of the photoconductance transients of copolymer:fullerene films measured by time-resolved microwave conductivity are discussed. Overall, the results of this work indicate that the semi-random approach is a powerful synthetic strategy for fine-tuning the optoelectronic and photophysical properties of D-A materials for a number of systematic studies, especially given the ease with which the D:A ratios in the semi-random copolymers can be tuned.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mz5002977 | DOI Listing |
Acta Biomater
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. Electronic address:
The development of wet adhesives capable of bonding in aqueous environments, particularly for hard tissues such as bone, tooth, and cartilage, remains a significant challenge in material chemistry and biomedical research. Currently available hard tissue adhesives in clinical practice lack well-defined wet adhesion properties. Nature offers valuable inspiration through the adhesive mechanisms of marine organisms, advancing the design of bioinspired wet adhesives.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
The rapid emergence of multidrug-resistant (MDR) bacteria represents a critical global health threat, underscoring the urgent need for alternative antimicrobial strategies beyond conventional antibiotics. In this study, we report the synthesis of novel biobased antimicrobial polymers bearing quaternary ammonium salts, derived from sustainable feedstocks, maleic anhydride, dimethylaminobenzaldehyde, and furfurylamine. The functional tricyclic oxanorbornene lactam monomer is polymerized via ring opening metathesis polymerization, yielding well-defined polymers with controlled molar masses and low dispersity.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.
Electrides are ionic crystals, with electrons acting as anions occupying well-defined lattice sites. These exotic materials have attracted considerable attention in recent years for potential applications in catalysis, rechargeable batteries, and display technology. Among this class of materials, electride semiconductors can further expand the horizon of potential applications due to the presence of a band gap.
View Article and Find Full Text PDFALTEX
January 2025
F. Hoffmann-La Roche Ltd, Precision Safety, Product Development, Basel, Switzerland.
The regular workshops held by the Center for Alternatives to Animal Testing (CAAT) on biology-inspired microphysiological systems (MPS) taking place every four years, have become a reliable measure to assess fundamental scientific, industrial and regulatory trends for translational science in the MPS-field from a bird's eye view. The 2023 workshop participants at that time concluded that the technology as used within academia has matured significantly, underlined by the broad use of MPS and the steadily increasing number of high quality research publications - yet, broad industry adoption of MPS has been slow, despite strong interest. Academic research using MPS primarily aims to accurately recapitulate human biology in MPS-based organ models in areas where traditional models have been lacking key elements of human physiology, thereby enabling breakthrough discoveries for life sciences.
View Article and Find Full Text PDFJ Headache Pain
January 2025
Department of Neuroscience, Bufalini Hospital, AUSL Romagna, Cesena, Italy.
Background: The term "aura" refers to a well-defined pattern of usually positive, progressive, and reversible neurological symptoms, with spreading depolarization as the underlying mechanism. While commonly associated with migraine, aura can also occur in other neurological disorders (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!